Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2513.html

2513. Minimize the Maximum of Two Arrays

Description

We have two arrays arr1 and arr2 which are initially empty. You need to add positive integers to them such that they satisfy all the following conditions:

  • arr1 contains uniqueCnt1 distinct positive integers, each of which is not divisible by divisor1.
  • arr2 contains uniqueCnt2 distinct positive integers, each of which is not divisible by divisor2.
  • No integer is present in both arr1 and arr2.

Given divisor1, divisor2, uniqueCnt1, and uniqueCnt2, return the minimum possible maximum integer that can be present in either array.

 

Example 1:

Input: divisor1 = 2, divisor2 = 7, uniqueCnt1 = 1, uniqueCnt2 = 3
Output: 4
Explanation: 
We can distribute the first 4 natural numbers into arr1 and arr2.
arr1 = [1] and arr2 = [2,3,4].
We can see that both arrays satisfy all the conditions.
Since the maximum value is 4, we return it.

Example 2:

Input: divisor1 = 3, divisor2 = 5, uniqueCnt1 = 2, uniqueCnt2 = 1
Output: 3
Explanation: 
Here arr1 = [1,2], and arr2 = [3] satisfy all conditions.
Since the maximum value is 3, we return it.

Example 3:

Input: divisor1 = 2, divisor2 = 4, uniqueCnt1 = 8, uniqueCnt2 = 2
Output: 15
Explanation: 
Here, the final possible arrays can be arr1 = [1,3,5,7,9,11,13,15], and arr2 = [2,6].
It can be shown that it is not possible to obtain a lower maximum satisfying all conditions. 

 

Constraints:

  • 2 <= divisor1, divisor2 <= 105
  • 1 <= uniqueCnt1, uniqueCnt2 < 109
  • 2 <= uniqueCnt1 + uniqueCnt2 <= 109

Solutions

  • class Solution {
        public int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) {
            long divisor = lcm(divisor1, divisor2);
            long left = 1, right = 10000000000L;
            while (left < right) {
                long mid = (left + right) >> 1;
                long cnt1 = mid / divisor1 * (divisor1 - 1) + mid % divisor1;
                long cnt2 = mid / divisor2 * (divisor2 - 1) + mid % divisor2;
                long cnt = mid / divisor * (divisor - 1) + mid % divisor;
                if (cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1 + uniqueCnt2) {
                    right = mid;
                } else {
                    left = mid + 1;
                }
            }
            return (int) left;
        }
    
        private long lcm(int a, int b) {
            return (long) a * b / gcd(a, b);
        }
    
        private int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    }
    
  • class Solution {
    public:
        int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) {
            long left = 1, right = 1e10;
            long divisor = lcm((long) divisor1, (long) divisor2);
            while (left < right) {
                long mid = (left + right) >> 1;
                long cnt1 = mid / divisor1 * (divisor1 - 1) + mid % divisor1;
                long cnt2 = mid / divisor2 * (divisor2 - 1) + mid % divisor2;
                long cnt = mid / divisor * (divisor - 1) + mid % divisor;
                if (cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1 + uniqueCnt2) {
                    right = mid;
                } else {
                    left = mid + 1;
                }
            }
            return left;
        }
    };
    
  • class Solution:
        def minimizeSet(
            self, divisor1: int, divisor2: int, uniqueCnt1: int, uniqueCnt2: int
        ) -> int:
            def f(x):
                cnt1 = x // divisor1 * (divisor1 - 1) + x % divisor1
                cnt2 = x // divisor2 * (divisor2 - 1) + x % divisor2
                cnt = x // divisor * (divisor - 1) + x % divisor
                return (
                    cnt1 >= uniqueCnt1
                    and cnt2 >= uniqueCnt2
                    and cnt >= uniqueCnt1 + uniqueCnt2
                )
    
            divisor = lcm(divisor1, divisor2)
            return bisect_left(range(10**10), True, key=f)
    
    
  • func minimizeSet(divisor1 int, divisor2 int, uniqueCnt1 int, uniqueCnt2 int) int {
    	divisor := lcm(divisor1, divisor2)
    	left, right := 1, 10000000000
    	for left < right {
    		mid := (left + right) >> 1
    		cnt1 := mid/divisor1*(divisor1-1) + mid%divisor1
    		cnt2 := mid/divisor2*(divisor2-1) + mid%divisor2
    		cnt := mid/divisor*(divisor-1) + mid%divisor
    		if cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1+uniqueCnt2 {
    			right = mid
    		} else {
    			left = mid + 1
    		}
    	}
    	return left
    }
    
    func lcm(a, b int) int {
    	return a * b / gcd(a, b)
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    

All Problems

All Solutions