Welcome to Subscribe On Youtube
2614. Prime In Diagonal
Description
You are given a 0-indexed two-dimensional integer array nums
.
Return the largest prime number that lies on at least one of the diagonals of nums
. In case, no prime is present on any of the diagonals, return 0.
Note that:
- An integer is prime if it is greater than
1
and has no positive integer divisors other than1
and itself. - An integer
val
is on one of the diagonals ofnums
if there exists an integeri
for whichnums[i][i] = val
or ani
for whichnums[i][nums.length - i - 1] = val
.
In the above diagram, one diagonal is [1,5,9] and another diagonal is [3,5,7].
Example 1:
Input: nums = [[1,2,3],[5,6,7],[9,10,11]] Output: 11 Explanation: The numbers 1, 3, 6, 9, and 11 are the only numbers present on at least one of the diagonals. Since 11 is the largest prime, we return 11.
Example 2:
Input: nums = [[1,2,3],[5,17,7],[9,11,10]] Output: 17 Explanation: The numbers 1, 3, 9, 10, and 17 are all present on at least one of the diagonals. 17 is the largest prime, so we return 17.
Constraints:
1 <= nums.length <= 300
nums.length == numsi.length
1 <= nums[i][j] <= 4*106
Solutions
Solution 1: Math + Simulation
We implement a function is_prime
to check whether a number is prime.
Then we iterate the array and check whether the numbers on the diagonals are prime. If so, we update the answer.
The time complexity is $O(n \times \sqrt{M})$, where $n$ and $M$ are the number of rows of the array and the maximum value in the array, respectively. The space complexity is $O(1)$.
-
class Solution { public int diagonalPrime(int[][] nums) { int n = nums.length; int ans = 0; for (int i = 0; i < n; ++i) { if (isPrime(nums[i][i])) { ans = Math.max(ans, nums[i][i]); } if (isPrime(nums[i][n - i - 1])) { ans = Math.max(ans, nums[i][n - i - 1]); } } return ans; } private boolean isPrime(int x) { if (x < 2) { return false; } for (int i = 2; i <= x / i; ++i) { if (x % i == 0) { return false; } } return true; } }
-
class Solution { public: int diagonalPrime(vector<vector<int>>& nums) { int n = nums.size(); int ans = 0; for (int i = 0; i < n; ++i) { if (isPrime(nums[i][i])) { ans = max(ans, nums[i][i]); } if (isPrime(nums[i][n - i - 1])) { ans = max(ans, nums[i][n - i - 1]); } } return ans; } bool isPrime(int x) { if (x < 2) { return false; } for (int i = 2; i <= x / i; ++i) { if (x % i == 0) { return false; } } return true; } };
-
class Solution: def diagonalPrime(self, nums: List[List[int]]) -> int: def is_prime(x: int) -> bool: if x < 2: return False return all(x % i for i in range(2, int(sqrt(x)) + 1)) n = len(nums) ans = 0 for i, row in enumerate(nums): if is_prime(row[i]): ans = max(ans, row[i]) if is_prime(row[n - i - 1]): ans = max(ans, row[n - i - 1]) return ans
-
func diagonalPrime(nums [][]int) (ans int) { n := len(nums) for i, row := range nums { if isPrime(row[i]) { ans = max(ans, row[i]) } if isPrime(row[n-i-1]) { ans = max(ans, row[n-i-1]) } } return } func isPrime(x int) bool { if x < 2 { return false } for i := 2; i <= x/i; i++ { if x%i == 0 { return false } } return true }
-
impl Solution { pub fn diagonal_prime(nums: Vec<Vec<i32>>) -> i32 { let mut ans = 0; let n = nums.len(); for (i, row) in nums.iter().enumerate() { if Self::is_prime(row[i]) && row[i] > ans { ans = row[i]; } if Self::is_prime(row[n - i - 1]) && row[n - i - 1] > ans { ans = row[n - i - 1]; } } ans } fn is_prime(n: i32) -> bool { if n < 2 { return false; } let upper = (n as f64).sqrt() as i32; for i in 2..=upper { if n % i == 0 { return false; } } true } }