Welcome to Subscribe On Youtube
2601. Prime Subtraction Operation
Description
You are given a 0-indexed integer array nums
of length n
.
You can perform the following operation as many times as you want:
- Pick an index
i
that you haven’t picked before, and pick a primep
strictly less thannums[i]
, then subtractp
fromnums[i]
.
Return true if you can make nums
a strictly increasing array using the above operation and false otherwise.
A strictly increasing array is an array whose each element is strictly greater than its preceding element.
Example 1:
Input: nums = [4,9,6,10] Output: true Explanation: In the first operation: Pick i = 0 and p = 3, and then subtract 3 from nums[0], so that nums becomes [1,9,6,10]. In the second operation: i = 1, p = 7, subtract 7 from nums[1], so nums becomes equal to [1,2,6,10]. After the second operation, nums is sorted in strictly increasing order, so the answer is true.
Example 2:
Input: nums = [6,8,11,12] Output: true Explanation: Initially nums is sorted in strictly increasing order, so we don't need to make any operations.
Example 3:
Input: nums = [5,8,3] Output: false Explanation: It can be proven that there is no way to perform operations to make nums sorted in strictly increasing order, so the answer is false.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
nums.length == n
Solutions
Solution 1: Preprocessing prime numbers + binary search
We first preprocess all the primes within $1000$ and record them in the array $p$.
For each element $nums[i]$ in the array $nums$, we need to find a prime $p[j]$ such that $p[j] \gt nums[i] - nums[i + 1]$ and $p[j]$ is as small as possible. If there is no such prime, it means that it cannot be strictly increased by subtraction operations, return false
. If there is such a prime, we will subtract $p[j]$ from $nums[i]$ and continue to process the next element.
If all the elements in $nums$ are processed, it means that it can be strictly increased by subtraction operations, return true
.
The time complexity is $O(n \log n)$ and the space complexity is $O(n)$. where $n$ is the length of the array $nums$.
-
class Solution { public boolean primeSubOperation(int[] nums) { List<Integer> p = new ArrayList<>(); for (int i = 2; i <= 1000; ++i) { boolean ok = true; for (int j : p) { if (i % j == 0) { ok = false; break; } } if (ok) { p.add(i); } } int n = nums.length; for (int i = n - 2; i >= 0; --i) { if (nums[i] < nums[i + 1]) { continue; } int j = search(p, nums[i] - nums[i + 1]); if (j == p.size() || p.get(j) >= nums[i]) { return false; } nums[i] -= p.get(j); } return true; } private int search(List<Integer> nums, int x) { int l = 0, r = nums.size(); while (l < r) { int mid = (l + r) >> 1; if (nums.get(mid) > x) { r = mid; } else { l = mid + 1; } } return l; } }
-
class Solution { public: bool primeSubOperation(vector<int>& nums) { vector<int> p; for (int i = 2; i <= 1000; ++i) { bool ok = true; for (int j : p) { if (i % j == 0) { ok = false; break; } } if (ok) { p.push_back(i); } } int n = nums.size(); for (int i = n - 2; i >= 0; --i) { if (nums[i] < nums[i + 1]) { continue; } int j = upper_bound(p.begin(), p.end(), nums[i] - nums[i + 1]) - p.begin(); if (j == p.size() || p[j] >= nums[i]) { return false; } nums[i] -= p[j]; } return true; } };
-
class Solution: def primeSubOperation(self, nums: List[int]) -> bool: p = [] for i in range(2, max(nums)): for j in p: if i % j == 0: break else: p.append(i) n = len(nums) for i in range(n - 2, -1, -1): if nums[i] < nums[i + 1]: continue j = bisect_right(p, nums[i] - nums[i + 1]) if j == len(p) or p[j] >= nums[i]: return False nums[i] -= p[j] return True
-
func primeSubOperation(nums []int) bool { p := []int{} for i := 2; i <= 1000; i++ { ok := true for _, j := range p { if i%j == 0 { ok = false break } } if ok { p = append(p, i) } } for i := len(nums) - 2; i >= 0; i-- { if nums[i] < nums[i+1] { continue } j := sort.SearchInts(p, nums[i]-nums[i+1]+1) if j == len(p) || p[j] >= nums[i] { return false } nums[i] -= p[j] } return true }
-
function primeSubOperation(nums: number[]): boolean { const p: number[] = []; for (let i = 2; i <= 1000; ++i) { let ok = true; for (const j of p) { if (i % j === 0) { ok = false; break; } } if (ok) { p.push(i); } } const search = (x: number): number => { let l = 0; let r = p.length; while (l < r) { const mid = (l + r) >> 1; if (p[mid] > x) { r = mid; } else { l = mid + 1; } } return l; }; const n = nums.length; for (let i = n - 2; i >= 0; --i) { if (nums[i] < nums[i + 1]) { continue; } const j = search(nums[i] - nums[i + 1]); if (j === p.length || p[j] >= nums[i]) { return false; } nums[i] -= p[j]; } return true; }