Welcome to Subscribe On Youtube

2601. Prime Subtraction Operation

Description

You are given a 0-indexed integer array nums of length n.

You can perform the following operation as many times as you want:

  • Pick an index i that you haven’t picked before, and pick a prime p strictly less than nums[i], then subtract p from nums[i].

Return true if you can make nums a strictly increasing array using the above operation and false otherwise.

A strictly increasing array is an array whose each element is strictly greater than its preceding element.

 

Example 1:

Input: nums = [4,9,6,10]
Output: true
Explanation: In the first operation: Pick i = 0 and p = 3, and then subtract 3 from nums[0], so that nums becomes [1,9,6,10].
In the second operation: i = 1, p = 7, subtract 7 from nums[1], so nums becomes equal to [1,2,6,10].
After the second operation, nums is sorted in strictly increasing order, so the answer is true.

Example 2:

Input: nums = [6,8,11,12]
Output: true
Explanation: Initially nums is sorted in strictly increasing order, so we don't need to make any operations.

Example 3:

Input: nums = [5,8,3]
Output: false
Explanation: It can be proven that there is no way to perform operations to make nums sorted in strictly increasing order, so the answer is false.

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 1000
  • nums.length == n

Solutions

Solution 1: Preprocessing prime numbers + binary search

We first preprocess all the primes within $1000$ and record them in the array $p$.

For each element $nums[i]$ in the array $nums$, we need to find a prime $p[j]$ such that $p[j] \gt nums[i] - nums[i + 1]$ and $p[j]$ is as small as possible. If there is no such prime, it means that it cannot be strictly increased by subtraction operations, return false. If there is such a prime, we will subtract $p[j]$ from $nums[i]$ and continue to process the next element.

If all the elements in $nums$ are processed, it means that it can be strictly increased by subtraction operations, return true.

The time complexity is $O(n \log n)$ and the space complexity is $O(n)$. where $n$ is the length of the array $nums$.

  • class Solution {
        public boolean primeSubOperation(int[] nums) {
            List<Integer> p = new ArrayList<>();
            for (int i = 2; i <= 1000; ++i) {
                boolean ok = true;
                for (int j : p) {
                    if (i % j == 0) {
                        ok = false;
                        break;
                    }
                }
                if (ok) {
                    p.add(i);
                }
            }
            int n = nums.length;
            for (int i = n - 2; i >= 0; --i) {
                if (nums[i] < nums[i + 1]) {
                    continue;
                }
                int j = search(p, nums[i] - nums[i + 1]);
                if (j == p.size() || p.get(j) >= nums[i]) {
                    return false;
                }
                nums[i] -= p.get(j);
            }
            return true;
        }
    
        private int search(List<Integer> nums, int x) {
            int l = 0, r = nums.size();
            while (l < r) {
                int mid = (l + r) >> 1;
                if (nums.get(mid) > x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    }
    
  • class Solution {
    public:
        bool primeSubOperation(vector<int>& nums) {
            vector<int> p;
            for (int i = 2; i <= 1000; ++i) {
                bool ok = true;
                for (int j : p) {
                    if (i % j == 0) {
                        ok = false;
                        break;
                    }
                }
                if (ok) {
                    p.push_back(i);
                }
            }
            int n = nums.size();
            for (int i = n - 2; i >= 0; --i) {
                if (nums[i] < nums[i + 1]) {
                    continue;
                }
                int j = upper_bound(p.begin(), p.end(), nums[i] - nums[i + 1]) - p.begin();
                if (j == p.size() || p[j] >= nums[i]) {
                    return false;
                }
                nums[i] -= p[j];
            }
            return true;
        }
    };
    
  • class Solution:
        def primeSubOperation(self, nums: List[int]) -> bool:
            p = []
            for i in range(2, max(nums)):
                for j in p:
                    if i % j == 0:
                        break
                else:
                    p.append(i)
    
            n = len(nums)
            for i in range(n - 2, -1, -1):
                if nums[i] < nums[i + 1]:
                    continue
                j = bisect_right(p, nums[i] - nums[i + 1])
                if j == len(p) or p[j] >= nums[i]:
                    return False
                nums[i] -= p[j]
            return True
    
    
  • func primeSubOperation(nums []int) bool {
    	p := []int{}
    	for i := 2; i <= 1000; i++ {
    		ok := true
    		for _, j := range p {
    			if i%j == 0 {
    				ok = false
    				break
    			}
    		}
    		if ok {
    			p = append(p, i)
    		}
    	}
    	for i := len(nums) - 2; i >= 0; i-- {
    		if nums[i] < nums[i+1] {
    			continue
    		}
    		j := sort.SearchInts(p, nums[i]-nums[i+1]+1)
    		if j == len(p) || p[j] >= nums[i] {
    			return false
    		}
    		nums[i] -= p[j]
    	}
    	return true
    }
    
  • function primeSubOperation(nums: number[]): boolean {
        const p: number[] = [];
        for (let i = 2; i <= 1000; ++i) {
            let ok = true;
            for (const j of p) {
                if (i % j === 0) {
                    ok = false;
                    break;
                }
            }
            if (ok) {
                p.push(i);
            }
        }
        const search = (x: number): number => {
            let l = 0;
            let r = p.length;
            while (l < r) {
                const mid = (l + r) >> 1;
                if (p[mid] > x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        };
        const n = nums.length;
        for (let i = n - 2; i >= 0; --i) {
            if (nums[i] < nums[i + 1]) {
                continue;
            }
            const j = search(nums[i] - nums[i + 1]);
            if (j === p.length || p[j] >= nums[i]) {
                return false;
            }
            nums[i] -= p[j];
        }
        return true;
    }
    
    

All Problems

All Solutions