Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2470.html

2470. Number of Subarrays With LCM Equal to K

  • Difficulty: Medium.
  • Related Topics: Array, Math, Number Theory.
  • Similar Questions: Number of Subarrays With GCD Equal to K.

Problem

Given an integer array nums and an integer k, return the number of **subarrays of nums where the least common multiple of the subarray’s elements is **k.

A subarray is a contiguous non-empty sequence of elements within an array.

The least common multiple of an array is the smallest positive integer that is divisible by all the array elements.

  Example 1:

Input: nums = [3,6,2,7,1], k = 6
Output: 4
Explanation: The subarrays of nums where 6 is the least common multiple of all the subarray's elements are:
- [3,6,2,7,1]
- [3,6,2,7,1]
- [3,6,2,7,1]
- [3,6,2,7,1]

Example 2:

Input: nums = [3], k = 2
Output: 0
Explanation: There are no subarrays of nums where 2 is the least common multiple of all the subarray's elements.

  Constraints:

  • 1 <= nums.length <= 1000

  • 1 <= nums[i], k <= 1000

Solution (Java, C++, Python)

  • class Solution {
        public int subarrayLCM(int[] nums, int k) {
            int n = nums.length;
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                int a = nums[i];
                for (int j = i; j < n; ++j) {
                    int b = nums[j];
                    int x = lcm(a, b);
                    if (x == k) {
                        ++ans;
                    }
                    a = x;
                }
            }
            return ans;
        }
        
        private int lcm(int a, int b) {
            return a * b / gcd(a, b);
        }
        
        private int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    }
    
  • class Solution {
    public:
        int subarrayLCM(vector<int>& nums, int k) {
            int n = nums.size();
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                int a = nums[i];
                for (int j = i; j < n; ++j) {
                    int b = nums[j];
                    int x = lcm(a, b);
                    ans += x == k;
                    a = x;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def subarrayLCM(self, nums: List[int], k: int) -> int:
            n = len(nums)
            ans = 0
            for i in range(n):
                a = nums[i]
                for b in nums[i:]:
                    x = lcm(a, b)
                    ans += x == k
                    a = x
            return ans
    
    
  • func subarrayLCM(nums []int, k int) (ans int) {
    	for i, a := range nums {
    		for _, b := range nums[i:] {
    			x := lcm(a, b)
    			if x == k {
    				ans++
    			}
    			a = x
    		}
    	}
    	return
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    
    func lcm(a, b int) int {
    	return a * b / gcd(a, b)
    }
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions