Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2467.html
2467. Most Profitable Path in a Tree
- Difficulty: Medium.
- Related Topics: Array, Tree, Depth-First Search, Breadth-First Search, Graph.
- Similar Questions: Snakes and Ladders.
Problem
There is an undirected tree with n
nodes labeled from 0
to n - 1
, rooted at node 0
. You are given a 2D integer array edges
of length n - 1
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the tree.
At every node i
, there is a gate. You are also given an array of even integers amount
, where amount[i]
represents:
-
the price needed to open the gate at node
i
, ifamount[i]
is negative, or, -
the cash reward obtained on opening the gate at node
i
, otherwise.
The game goes on as follows:
-
Initially, Alice is at node
0
and Bob is at nodebob
. -
At every second, Alice and Bob each move to an adjacent node. Alice moves towards some leaf node, while Bob moves towards node
0
. For every node along their path, Alice and Bob either spend money to open the gate at that node, or accept the reward. Note that: -
If the gate is already open, no price will be required, nor will there be any cash reward.
-
If Alice and Bob reach the node simultaneously, they share the price/reward for opening the gate there. In other words, if the price to open the gate is
c
, then both Alice and Bob payc / 2
each. Similarly, if the reward at the gate isc
, both of them receivec / 2
each. -
If Alice reaches a leaf node, she stops moving. Similarly, if Bob reaches node
0
, he stops moving. Note that these events are independent of each other.
Return** the maximum net income Alice can have if she travels towards the optimal leaf node.**
Example 1:
Input: edges = [[0,1],[1,2],[1,3],[3,4]], bob = 3, amount = [-2,4,2,-4,6]
Output: 6
Explanation:
The above diagram represents the given tree. The game goes as follows:
- Alice is initially on node 0, Bob on node 3. They open the gates of their respective nodes.
Alice's net income is now -2.
- Both Alice and Bob move to node 1.
Since they reach here simultaneously, they open the gate together and share the reward.
Alice's net income becomes -2 + (4 / 2) = 0.
- Alice moves on to node 3. Since Bob already opened its gate, Alice's income remains unchanged.
Bob moves on to node 0, and stops moving.
- Alice moves on to node 4 and opens the gate there. Her net income becomes 0 + 6 = 6.
Now, neither Alice nor Bob can make any further moves, and the game ends.
It is not possible for Alice to get a higher net income.
Example 2:
Input: edges = [[0,1]], bob = 1, amount = [-7280,2350]
Output: -7280
Explanation:
Alice follows the path 0->1 whereas Bob follows the path 1->0.
Thus, Alice opens the gate at node 0 only. Hence, her net income is -7280.
Constraints:
-
2 <= n <= 105
-
edges.length == n - 1
-
edges[i].length == 2
-
0 <= ai, bi < n
-
ai != bi
-
edges
represents a valid tree. -
1 <= bob < n
-
amount.length == n
-
amount[i]
is an even integer in the range[-104, 104]
.
Solution (Java, C++, Python)
-
class Solution { private List<Integer>[] g; private int[] amount; private int[] ts; private int ans = Integer.MIN_VALUE; public int mostProfitablePath(int[][] edges, int bob, int[] amount) { int n = edges.length + 1; g = new List[n]; ts = new int[n]; this.amount = amount; Arrays.setAll(g, k -> new ArrayList<>()); Arrays.fill(ts, n); for (var e : edges) { int a = e[0], b = e[1]; g[a].add(b); g[b].add(a); } dfs1(bob, -1, 0); ts[bob] = 0; dfs2(0, -1, 0, 0); return ans; } private boolean dfs1(int i, int fa, int t) { if (i == 0) { ts[i] = Math.min(ts[i], t); return true; } for (int j : g[i]) { if (j != fa && dfs1(j, i, t + 1)) { ts[j] = Math.min(ts[j], t + 1); return true; } } return false; } private void dfs2(int i, int fa, int t, int v) { if (t == ts[i]) { v += amount[i] >> 1; } else if (t < ts[i]) { v += amount[i]; } if (g[i].size() == 1 && g[i].get(0) == fa) { ans = Math.max(ans, v); return; } for (int j : g[i]) { if (j != fa) { dfs2(j, i, t + 1, v); } } } }
-
class Solution { public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = edges.size() + 1; vector<vector<int>> g(n); for (auto& e : edges) { int a = e[0], b = e[1]; g[a].emplace_back(b); g[b].emplace_back(a); } vector<int> ts(n, n); function<bool(int i, int fa, int t)> dfs1 = [&](int i, int fa, int t) -> bool { if (i == 0) { ts[i] = t; return true; } for (int j : g[i]) { if (j != fa && dfs1(j, i, t + 1)) { ts[j] = min(ts[j], t + 1); return true; } } return false; }; dfs1(bob, -1, 0); ts[bob] = 0; int ans = INT_MIN; function<void(int i, int fa, int t, int v)> dfs2 = [&](int i, int fa, int t, int v) { if (t == ts[i]) v += amount[i] >> 1; else if (t < ts[i]) v += amount[i]; if (g[i].size() == 1 && g[i][0] == fa) { ans = max(ans, v); return; } for (int j : g[i]) if (j != fa) dfs2(j, i, t + 1, v); }; dfs2(0, -1, 0, 0); return ans; } };
-
class Solution: def mostProfitablePath( self, edges: List[List[int]], bob: int, amount: List[int] ) -> int: def dfs1(i, fa, t): if i == 0: ts[i] = min(ts[i], t) return True for j in g[i]: if j != fa and dfs1(j, i, t + 1): ts[j] = min(ts[j], t + 1) return True return False def dfs2(i, fa, t, v): if t == ts[i]: v += amount[i] // 2 elif t < ts[i]: v += amount[i] nonlocal ans if len(g[i]) == 1 and g[i][0] == fa: ans = max(ans, v) return for j in g[i]: if j != fa: dfs2(j, i, t + 1, v) n = len(edges) + 1 g = defaultdict(list) ts = [n] * n for a, b in edges: g[a].append(b) g[b].append(a) dfs1(bob, -1, 0) ts[bob] = 0 ans = -inf dfs2(0, -1, 0, 0) return ans
-
func mostProfitablePath(edges [][]int, bob int, amount []int) int { n := len(edges) + 1 g := make([][]int, n) for _, e := range edges { a, b := e[0], e[1] g[a] = append(g[a], b) g[b] = append(g[b], a) } ts := make([]int, n) for i := range ts { ts[i] = n } var dfs1 func(int, int, int) bool dfs1 = func(i, fa, t int) bool { if i == 0 { ts[i] = min(ts[i], t) return true } for _, j := range g[i] { if j != fa && dfs1(j, i, t+1) { ts[j] = min(ts[j], t+1) return true } } return false } dfs1(bob, -1, 0) ts[bob] = 0 ans := -0x3f3f3f3f var dfs2 func(int, int, int, int) dfs2 = func(i, fa, t, v int) { if t == ts[i] { v += amount[i] >> 1 } else if t < ts[i] { v += amount[i] } if len(g[i]) == 1 && g[i][0] == fa { ans = max(ans, v) return } for _, j := range g[i] { if j != fa { dfs2(j, i, t+1, v) } } } dfs2(0, -1, 0, 0) return ans } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b }
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).