Welcome to Subscribe On Youtube
2577. Minimum Time to Visit a Cell In a Grid
Description
You are given a m x n
matrix grid
consisting of non-negative integers where grid[row][col]
represents the minimum time required to be able to visit the cell (row, col)
, which means you can visit the cell (row, col)
only when the time you visit it is greater than or equal to grid[row][col]
.
You are standing in the top-left cell of the matrix in the 0th
second, and you must move to any adjacent cell in the four directions: up, down, left, and right. Each move you make takes 1 second.
Return the minimum time required in which you can visit the bottom-right cell of the matrix. If you cannot visit the bottom-right cell, then return -1
.
Example 1:
Input: grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]] Output: 7 Explanation: One of the paths that we can take is the following: - at t = 0, we are on the cell (0,0). - at t = 1, we move to the cell (0,1). It is possible because grid[0][1] <= 1. - at t = 2, we move to the cell (1,1). It is possible because grid[1][1] <= 2. - at t = 3, we move to the cell (1,2). It is possible because grid[1][2] <= 3. - at t = 4, we move to the cell (1,1). It is possible because grid[1][1] <= 4. - at t = 5, we move to the cell (1,2). It is possible because grid[1][2] <= 5. - at t = 6, we move to the cell (1,3). It is possible because grid[1][3] <= 6. - at t = 7, we move to the cell (2,3). It is possible because grid[2][3] <= 7. The final time is 7. It can be shown that it is the minimum time possible.
Example 2:
Input: grid = [[0,2,4],[3,2,1],[1,0,4]] Output: -1 Explanation: There is no path from the top left to the bottom-right cell.
Constraints:
m == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
0 <= grid[i][j] <= 105
grid[0][0] == 0
Solutions
Solution 1: Shortest Path + Priority Queue (Min Heap)
We observe that if we cannot move at the cell $(0, 0)$, i.e., $grid[0][1] > 1$ and $grid[1][0] > 1$, then we cannot move at the cell $(0, 0)$ anymore, and we should return $-1$. For other cases, we can move.
Next, we define $dist[i][j]$ to represent the earliest arrival time at $(i, j)$. Initially, $dist[0][0] = 0$, and the $dist$ of other positions are all initialized to $\infty$.
We use a priority queue (min heap) to maintain the cells that can currently move. The elements in the priority queue are $(dist[i][j], i, j)$, i.e., $(dist[i][j], i, j)$ represents the earliest arrival time at $(i, j)$.
Each time we take out the cell $(t, i, j)$ that can arrive the earliest from the priority queue. If $(i, j)$ is $(m - 1, n - 1)$, then we directly return $t$. Otherwise, we traverse the four adjacent cells $(x, y)$ of $(i, j)$, which are up, down, left, and right. If $t + 1 < grid[x][y]$, then the time $nt = grid[x][y] + (grid[x][y] - (t + 1)) \bmod 2$ to move to $(x, y)$. At this time, we can repeatedly move to extend the time to no less than $grid[x][y]$, depending on the parity of the distance between $t + 1$ and $grid[x][y]$. Otherwise, the time $nt = t + 1$ to move to $(x, y)$. If $nt < dist[x][y]$, then we update $dist[x][y] = nt$, and add $(nt, x, y)$ to the priority queue.
The time complexity is $O(m \times n \times \log (m \times n))$, and the space complexity is $O(m \times n)$. Where $m$ and $n$ are the number of rows and columns of the grid, respectively.
-
class Solution { public int minimumTime(int[][] grid) { if (grid[0][1] > 1 && grid[1][0] > 1) { return -1; } int m = grid.length, n = grid[0].length; int[][] dist = new int[m][n]; for (var e : dist) { Arrays.fill(e, 1 << 30); } dist[0][0] = 0; PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]); pq.offer(new int[] {0, 0, 0}); int[] dirs = {-1, 0, 1, 0, -1}; while (true) { var p = pq.poll(); int i = p[1], j = p[2]; if (i == m - 1 && j == n - 1) { return p[0]; } for (int k = 0; k < 4; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < m && y >= 0 && y < n) { int nt = p[0] + 1; if (nt < grid[x][y]) { nt = grid[x][y] + (grid[x][y] - nt) % 2; } if (nt < dist[x][y]) { dist[x][y] = nt; pq.offer(new int[] {nt, x, y}); } } } } } }
-
class Solution { public: int minimumTime(vector<vector<int>>& grid) { if (grid[0][1] > 1 && grid[1][0] > 1) { return -1; } int m = grid.size(), n = grid[0].size(); int dist[m][n]; memset(dist, 0x3f, sizeof dist); dist[0][0] = 0; using tii = tuple<int, int, int>; priority_queue<tii, vector<tii>, greater<tii>> pq; pq.emplace(0, 0, 0); int dirs[5] = {-1, 0, 1, 0, -1}; while (1) { auto [t, i, j] = pq.top(); pq.pop(); if (i == m - 1 && j == n - 1) { return t; } for (int k = 0; k < 4; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < m && y >= 0 && y < n) { int nt = t + 1; if (nt < grid[x][y]) { nt = grid[x][y] + (grid[x][y] - nt) % 2; } if (nt < dist[x][y]) { dist[x][y] = nt; pq.emplace(nt, x, y); } } } } } };
-
class Solution: def minimumTime(self, grid: List[List[int]]) -> int: if grid[0][1] > 1 and grid[1][0] > 1: return -1 m, n = len(grid), len(grid[0]) dist = [[inf] * n for _ in range(m)] dist[0][0] = 0 q = [(0, 0, 0)] dirs = (-1, 0, 1, 0, -1) while 1: t, i, j = heappop(q) if i == m - 1 and j == n - 1: return t for a, b in pairwise(dirs): x, y = i + a, j + b if 0 <= x < m and 0 <= y < n: nt = t + 1 if nt < grid[x][y]: nt = grid[x][y] + (grid[x][y] - nt) % 2 if nt < dist[x][y]: dist[x][y] = nt heappush(q, (nt, x, y))
-
func minimumTime(grid [][]int) int { if grid[0][1] > 1 && grid[1][0] > 1 { return -1 } m, n := len(grid), len(grid[0]) dist := make([][]int, m) for i := range dist { dist[i] = make([]int, n) for j := range dist[i] { dist[i][j] = 1 << 30 } } dist[0][0] = 0 pq := hp{} heap.Push(&pq, tuple{0, 0, 0}) dirs := [5]int{-1, 0, 1, 0, -1} for { p := heap.Pop(&pq).(tuple) i, j := p.i, p.j if i == m-1 && j == n-1 { return p.t } for k := 0; k < 4; k++ { x, y := i+dirs[k], j+dirs[k+1] if x >= 0 && x < m && y >= 0 && y < n { nt := p.t + 1 if nt < grid[x][y] { nt = grid[x][y] + (grid[x][y]-nt)%2 } if nt < dist[x][y] { dist[x][y] = nt heap.Push(&pq, tuple{nt, x, y}) } } } } } type tuple struct{ t, i, j int } type hp []tuple func (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].t < h[j].t } func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp) Push(v any) { *h = append(*h, v.(tuple)) } func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
-
function minimumTime(grid: number[][]): number { if (grid[0][1] > 1 && grid[1][0] > 1) return -1; const [m, n] = [grid.length, grid[0].length]; const DIRS = [-1, 0, 1, 0, -1]; const q = new MinPriorityQueue({ priority: ([x]) => x }); const dist: number[][] = Array.from({ length: m }, () => new Array(n).fill(Number.POSITIVE_INFINITY), ); dist[0][0] = 0; q.enqueue([0, 0, 0]); while (true) { const [t, i, j] = q.dequeue().element; if (i === m - 1 && j === n - 1) return t; for (let k = 0; k < 4; k++) { const [x, y] = [i + DIRS[k], j + DIRS[k + 1]]; if (x < 0 || x >= m || y < 0 || y >= n) continue; let nt = t + 1; if (nt < grid[x][y]) { nt = grid[x][y] + ((grid[x][y] - nt) % 2); } if (nt < dist[x][y]) { dist[x][y] = nt; q.enqueue([nt, x, y]); } } } }
-
function minimumTime(grid) { if (grid[0][1] > 1 && grid[1][0] > 1) return -1; const [m, n] = [grid.length, grid[0].length]; const DIRS = [-1, 0, 1, 0, -1]; const q = new MinPriorityQueue({ priority: ([x]) => x }); const dist = Array.from({ length: m }, () => new Array(n).fill(Number.POSITIVE_INFINITY)); dist[0][0] = 0; q.enqueue([0, 0, 0]); while (true) { const [t, i, j] = q.dequeue().element; if (i === m - 1 && j === n - 1) return t; for (let k = 0; k < 4; k++) { const [x, y] = [i + DIRS[k], j + DIRS[k + 1]]; if (x < 0 || x >= m || y < 0 || y >= n) continue; let nt = t + 1; if (nt < grid[x][y]) { nt = grid[x][y] + ((grid[x][y] - nt) % 2); } if (nt < dist[x][y]) { dist[x][y] = nt; q.enqueue([nt, x, y]); } } } }