Welcome to Subscribe On Youtube
2576. Find the Maximum Number of Marked Indices
Description
You are given a 0-indexed integer array nums
.
Initially, all of the indices are unmarked. You are allowed to make this operation any number of times:
- Pick two different unmarked indices
i
andj
such that2 * nums[i] <= nums[j]
, then marki
andj
.
Return the maximum possible number of marked indices in nums
using the above operation any number of times.
Example 1:
Input: nums = [3,5,2,4] Output: 2 Explanation: In the first operation: pick i = 2 and j = 1, the operation is allowed because 2 * nums[2] <= nums[1]. Then mark index 2 and 1. It can be shown that there's no other valid operation so the answer is 2.
Example 2:
Input: nums = [9,2,5,4] Output: 4 Explanation: In the first operation: pick i = 3 and j = 0, the operation is allowed because 2 * nums[3] <= nums[0]. Then mark index 3 and 0. In the second operation: pick i = 1 and j = 2, the operation is allowed because 2 * nums[1] <= nums[2]. Then mark index 1 and 2. Since there is no other operation, the answer is 4.
Example 3:
Input: nums = [7,6,8] Output: 0 Explanation: There is no valid operation to do, so the answer is 0.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions
Solution 1: Greedy + Two Pointers
In order to mark as many indices as possible, we can sort the array nums
, and then traverse the array from left to right. For each index $i$, we find the first index $j$ in the right half of the array that satisfies $2 \times nums[i] \leq nums[j]$, and then mark indices $i$ and $j$. Continue to traverse the next index $i$. When we have traversed the right half of the array, it means that the marking is complete, and the number of marked indices is the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array nums
.
-
class Solution { public int maxNumOfMarkedIndices(int[] nums) { Arrays.sort(nums); int n = nums.length; int ans = 0; for (int i = 0, j = (n + 1) / 2; j < n; ++i, ++j) { while (j < n && nums[i] * 2 > nums[j]) { ++j; } if (j < n) { ans += 2; } } return ans; } }
-
class Solution { public: int maxNumOfMarkedIndices(vector<int>& nums) { sort(nums.begin(), nums.end()); int n = nums.size(); int ans = 0; for (int i = 0, j = (n + 1) / 2; j < n; ++i, ++j) { while (j < n && nums[i] * 2 > nums[j]) { ++j; } if (j < n) { ans += 2; } } return ans; } };
-
class Solution: def maxNumOfMarkedIndices(self, nums: List[int]) -> int: nums.sort() n = len(nums) i, j = 0, (n + 1) // 2 ans = 0 while j < n: while j < n and nums[i] * 2 > nums[j]: j += 1 if j < n: ans += 2 i, j = i + 1, j + 1 return ans
-
func maxNumOfMarkedIndices(nums []int) (ans int) { sort.Ints(nums) n := len(nums) for i, j := 0, (n+1)/2; j < n; i, j = i+1, j+1 { for j < n && nums[i]*2 > nums[j] { j++ } if j < n { ans += 2 } } return }
-
function maxNumOfMarkedIndices(nums: number[]): number { nums.sort((a, b) => a - b); const n = nums.length; let ans = 0; for (let i = 0, j = Math.floor((n + 1) / 2); j < n; ++i, ++j) { while (j < n && nums[i] * 2 > nums[j]) { ++j; } if (j < n) { ans += 2; } } return ans; }
-
impl Solution { pub fn max_num_of_marked_indices(mut nums: Vec<i32>) -> i32 { nums.sort(); let mut i = 0; let n = nums.len(); for j in (n + 1) / 2..n { if nums[i] * 2 <= nums[j] { i += 1; } } (i * 2) as i32 } }