Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2454.html

2454. Next Greater Element IV

  • Difficulty: Hard.
  • Related Topics: Array, Binary Search, Stack, Sorting, Heap (Priority Queue), Monotonic Stack.
  • Similar Questions: Next Greater Element I, Replace Elements with Greatest Element on Right Side.

Problem

You are given a 0-indexed array of non-negative integers nums. For each integer in nums, you must find its respective second greater integer.

The second greater integer of nums[i] is nums[j] such that:

  • j > i

  • nums[j] > nums[i]

  • There exists exactly one index k such that nums[k] > nums[i] and i < k < j.

If there is no such nums[j], the second greater integer is considered to be -1.

  • For example, in the array [1, 2, 4, 3], the second greater integer of 1 is 4, 2 is 3, and that of 3 and 4 is -1.

Return** an integer array answer, where answer[i] is the second greater integer of nums[i].**

  Example 1:

Input: nums = [2,4,0,9,6]
Output: [9,6,6,-1,-1]
Explanation:
0th index: 4 is the first integer greater than 2, and 9 is the second integer greater than 2, to the right of 2.
1st index: 9 is the first, and 6 is the second integer greater than 4, to the right of 4.
2nd index: 9 is the first, and 6 is the second integer greater than 0, to the right of 0.
3rd index: There is no integer greater than 9 to its right, so the second greater integer is considered to be -1.
4th index: There is no integer greater than 6 to its right, so the second greater integer is considered to be -1.
Thus, we return [9,6,6,-1,-1].

Example 2:

Input: nums = [3,3]
Output: [-1,-1]
Explanation:
We return [-1,-1] since neither integer has any integer greater than it.

  Constraints:

  • 1 <= nums.length <= 105

  • 0 <= nums[i] <= 109

Solution (Java, C++, Python)

  • class Solution {
        public int[] secondGreaterElement(int[] nums) {
            Deque<Integer> stk = new ArrayDeque<>();
            PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
            int n = nums.length;
            int[] ans = new int[n];
            Arrays.fill(ans, -1);
            for (int i = 0; i < n; ++i) {
                int v = nums[i];
                while (!q.isEmpty() && q.peek()[0] < v) {
                    ans[q.peek()[1]] = v;
                    q.poll();
                }
                while (!stk.isEmpty() && nums[stk.peek()] < v) {
                    q.offer(new int[] {nums[stk.peek()], stk.pop()});
                }
                stk.push(i);
            }
            return ans;
        }
    }
    
  • using pii = pair<int, int>;
    
    class Solution {
    public:
        vector<int> secondGreaterElement(vector<int>& nums) {
            stack<int> stk;
            priority_queue<pii, vector<pii>, greater<pii>> q;
            int n = nums.size();
            vector<int> ans(n, -1);
            for (int i = 0; i < n; ++i) {
                int v = nums[i];
                while (!q.empty() && q.top().first < v) {
                    ans[q.top().second] = v;
                    q.pop();
                }
                while (!stk.empty() && nums[stk.top()] < v) {
                    q.push({nums[stk.top()], stk.top()});
                    stk.pop();
                }
                stk.push(i);
            }
            return ans;
        }
    };
    
  • class Solution:
        def secondGreaterElement(self, nums: List[int]) -> List[int]:
            stk = []
            q = []
            ans = [-1] * len(nums)
            for i, v in enumerate(nums):
                while q and q[0][0] < v:
                    ans[q[0][1]] = v
                    heappop(q)
                while stk and nums[stk[-1]] < v:
                    heappush(q, (nums[stk[-1]], stk.pop()))
                stk.append(i)
            return ans
    
    
  • func secondGreaterElement(nums []int) []int {
    	stk := []int{}
    	q := hp{}
    	n := len(nums)
    	ans := make([]int, n)
    	for i := range ans {
    		ans[i] = -1
    	}
    	for i, v := range nums {
    		for len(q) > 0 && q[0].v < v {
    			ans[q[0].i] = v
    			heap.Pop(&q)
    		}
    		for len(stk) > 0 && nums[stk[len(stk)-1]] < v {
    			heap.Push(&q, pair{nums[stk[len(stk)-1]], stk[len(stk)-1]})
    			stk = stk[:len(stk)-1]
    		}
    		stk = append(stk, i)
    	}
    	return ans
    }
    
    type pair struct{ v, i int }
    
    type hp []pair
    
    func (h hp) Len() int { return len(h) }
    func (h hp) Less(i, j int) bool {
    	a, b := h[i], h[j]
    	return a.v < b.v
    }
    func (h hp) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
    func (h *hp) Push(v interface{}) { *h = append(*h, v.(pair)) }
    func (h *hp) Pop() interface{}   { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
    
  • function secondGreaterElement(nums: number[]): number[] {
        const n = nums.length;
        const arr: number[][] = [];
        for (let i = 0; i < n; ++i) {
            arr.push([nums[i], i]);
        }
        arr.sort((a, b) => (a[0] == b[0] ? a[1] - b[1] : b[0] - a[0]));
        const ans = Array(n).fill(-1);
        const ts = new TreeSet<number>();
        for (const [_, i] of arr) {
            let j = ts.higher(i);
            if (j !== undefined) {
                j = ts.higher(j);
                if (j !== undefined) {
                    ans[i] = nums[j];
                }
            }
            ts.add(i);
        }
        return ans;
    }
    
    type Compare<T> = (lhs: T, rhs: T) => number;
    
    class RBTreeNode<T = number> {
        data: T;
        count: number;
        left: RBTreeNode<T> | null;
        right: RBTreeNode<T> | null;
        parent: RBTreeNode<T> | null;
        color: number;
        constructor(data: T) {
            this.data = data;
            this.left = this.right = this.parent = null;
            this.color = 0;
            this.count = 1;
        }
    
        sibling(): RBTreeNode<T> | null {
            if (!this.parent) return null; // sibling null if no parent
            return this.isOnLeft() ? this.parent.right : this.parent.left;
        }
    
        isOnLeft(): boolean {
            return this === this.parent!.left;
        }
    
        hasRedChild(): boolean {
            return (
                Boolean(this.left && this.left.color === 0) ||
                Boolean(this.right && this.right.color === 0)
            );
        }
    }
    
    class RBTree<T> {
        root: RBTreeNode<T> | null;
        lt: (l: T, r: T) => boolean;
        constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
            this.root = null;
            this.lt = (l: T, r: T) => compare(l, r) < 0;
        }
    
        rotateLeft(pt: RBTreeNode<T>): void {
            const right = pt.right!;
            pt.right = right.left;
    
            if (pt.right) pt.right.parent = pt;
            right.parent = pt.parent;
    
            if (!pt.parent) this.root = right;
            else if (pt === pt.parent.left) pt.parent.left = right;
            else pt.parent.right = right;
    
            right.left = pt;
            pt.parent = right;
        }
    
        rotateRight(pt: RBTreeNode<T>): void {
            const left = pt.left!;
            pt.left = left.right;
    
            if (pt.left) pt.left.parent = pt;
            left.parent = pt.parent;
    
            if (!pt.parent) this.root = left;
            else if (pt === pt.parent.left) pt.parent.left = left;
            else pt.parent.right = left;
    
            left.right = pt;
            pt.parent = left;
        }
    
        swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
            const tmp = p1.color;
            p1.color = p2.color;
            p2.color = tmp;
        }
    
        swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
            const tmp = p1.data;
            p1.data = p2.data;
            p2.data = tmp;
        }
    
        fixAfterInsert(pt: RBTreeNode<T>): void {
            let parent = null;
            let grandParent = null;
    
            while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
                parent = pt.parent;
                grandParent = pt.parent.parent;
    
                /*  Case : A
                    Parent of pt is left child of Grand-parent of pt */
                if (parent === grandParent?.left) {
                    const uncle = grandParent.right;
    
                    /* Case : 1
                       The uncle of pt is also red
                       Only Recoloring required */
                    if (uncle && uncle.color === 0) {
                        grandParent.color = 0;
                        parent.color = 1;
                        uncle.color = 1;
                        pt = grandParent;
                    } else {
                        /* Case : 2
                           pt is right child of its parent
                           Left-rotation required */
                        if (pt === parent.right) {
                            this.rotateLeft(parent);
                            pt = parent;
                            parent = pt.parent;
                        }
    
                        /* Case : 3
                           pt is left child of its parent
                           Right-rotation required */
                        this.rotateRight(grandParent);
                        this.swapColor(parent!, grandParent);
                        pt = parent!;
                    }
                } else {
                    /* Case : B
                   Parent of pt is right child of Grand-parent of pt */
                    const uncle = grandParent!.left;
    
                    /*  Case : 1
                        The uncle of pt is also red
                        Only Recoloring required */
                    if (uncle != null && uncle.color === 0) {
                        grandParent!.color = 0;
                        parent.color = 1;
                        uncle.color = 1;
                        pt = grandParent!;
                    } else {
                        /* Case : 2
                           pt is left child of its parent
                           Right-rotation required */
                        if (pt === parent.left) {
                            this.rotateRight(parent);
                            pt = parent;
                            parent = pt.parent;
                        }
    
                        /* Case : 3
                           pt is right child of its parent
                           Left-rotation required */
                        this.rotateLeft(grandParent!);
                        this.swapColor(parent!, grandParent!);
                        pt = parent!;
                    }
                }
            }
            this.root!.color = 1;
        }
    
        delete(val: T): boolean {
            const node = this.find(val);
            if (!node) return false;
            node.count--;
            if (!node.count) this.deleteNode(node);
            return true;
        }
    
        deleteAll(val: T): boolean {
            const node = this.find(val);
            if (!node) return false;
            this.deleteNode(node);
            return true;
        }
    
        deleteNode(v: RBTreeNode<T>): void {
            const u = BSTreplace(v);
    
            // True when u and v are both black
            const uvBlack = (u === null || u.color === 1) && v.color === 1;
            const parent = v.parent!;
    
            if (!u) {
                // u is null therefore v is leaf
                if (v === this.root) this.root = null;
                // v is root, making root null
                else {
                    if (uvBlack) {
                        // u and v both black
                        // v is leaf, fix double black at v
                        this.fixDoubleBlack(v);
                    } else {
                        // u or v is red
                        if (v.sibling()) {
                            // sibling is not null, make it red"
                            v.sibling()!.color = 0;
                        }
                    }
                    // delete v from the tree
                    if (v.isOnLeft()) parent.left = null;
                    else parent.right = null;
                }
                return;
            }
    
            if (!v.left || !v.right) {
                // v has 1 child
                if (v === this.root) {
                    // v is root, assign the value of u to v, and delete u
                    v.data = u.data;
                    v.left = v.right = null;
                } else {
                    // Detach v from tree and move u up
                    if (v.isOnLeft()) parent.left = u;
                    else parent.right = u;
                    u.parent = parent;
                    if (uvBlack) this.fixDoubleBlack(u);
                    // u and v both black, fix double black at u
                    else u.color = 1; // u or v red, color u black
                }
                return;
            }
    
            // v has 2 children, swap data with successor and recurse
            this.swapData(u, v);
            this.deleteNode(u);
    
            // find node that replaces a deleted node in BST
            function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
                // when node have 2 children
                if (x.left && x.right) return successor(x.right);
                // when leaf
                if (!x.left && !x.right) return null;
                // when single child
                return x.left ?? x.right;
            }
            // find node that do not have a left child
            // in the subtree of the given node
            function successor(x: RBTreeNode<T>): RBTreeNode<T> {
                let temp = x;
                while (temp.left) temp = temp.left;
                return temp;
            }
        }
    
        fixDoubleBlack(x: RBTreeNode<T>): void {
            if (x === this.root) return; // Reached root
    
            const sibling = x.sibling();
            const parent = x.parent!;
            if (!sibling) {
                // No sibiling, double black pushed up
                this.fixDoubleBlack(parent);
            } else {
                if (sibling.color === 0) {
                    // Sibling red
                    parent.color = 0;
                    sibling.color = 1;
                    if (sibling.isOnLeft()) this.rotateRight(parent);
                    // left case
                    else this.rotateLeft(parent); // right case
                    this.fixDoubleBlack(x);
                } else {
                    // Sibling black
                    if (sibling.hasRedChild()) {
                        // at least 1 red children
                        if (sibling.left && sibling.left.color === 0) {
                            if (sibling.isOnLeft()) {
                                // left left
                                sibling.left.color = sibling.color;
                                sibling.color = parent.color;
                                this.rotateRight(parent);
                            } else {
                                // right left
                                sibling.left.color = parent.color;
                                this.rotateRight(sibling);
                                this.rotateLeft(parent);
                            }
                        } else {
                            if (sibling.isOnLeft()) {
                                // left right
                                sibling.right!.color = parent.color;
                                this.rotateLeft(sibling);
                                this.rotateRight(parent);
                            } else {
                                // right right
                                sibling.right!.color = sibling.color;
                                sibling.color = parent.color;
                                this.rotateLeft(parent);
                            }
                        }
                        parent.color = 1;
                    } else {
                        // 2 black children
                        sibling.color = 0;
                        if (parent.color === 1) this.fixDoubleBlack(parent);
                        else parent.color = 1;
                    }
                }
            }
        }
    
        insert(data: T): boolean {
            // search for a position to insert
            let parent = this.root;
            while (parent) {
                if (this.lt(data, parent.data)) {
                    if (!parent.left) break;
                    else parent = parent.left;
                } else if (this.lt(parent.data, data)) {
                    if (!parent.right) break;
                    else parent = parent.right;
                } else break;
            }
    
            // insert node into parent
            const node = new RBTreeNode(data);
            if (!parent) this.root = node;
            else if (this.lt(node.data, parent.data)) parent.left = node;
            else if (this.lt(parent.data, node.data)) parent.right = node;
            else {
                parent.count++;
                return false;
            }
            node.parent = parent;
            this.fixAfterInsert(node);
            return true;
        }
    
        find(data: T): RBTreeNode<T> | null {
            let p = this.root;
            while (p) {
                if (this.lt(data, p.data)) {
                    p = p.left;
                } else if (this.lt(p.data, data)) {
                    p = p.right;
                } else break;
            }
            return p ?? null;
        }
    
        *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
            if (!root) return;
            for (const v of this.inOrder(root.left!)) yield v;
            yield root.data;
            for (const v of this.inOrder(root.right!)) yield v;
        }
    
        *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
            if (!root) return;
            for (const v of this.reverseInOrder(root.right!)) yield v;
            yield root.data;
            for (const v of this.reverseInOrder(root.left!)) yield v;
        }
    }
    
    class TreeSet<T = number> {
        _size: number;
        tree: RBTree<T>;
        compare: Compare<T>;
        constructor(
            collection: T[] | Compare<T> = [],
            compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
        ) {
            if (typeof collection === 'function') {
                compare = collection;
                collection = [];
            }
            this._size = 0;
            this.compare = compare;
            this.tree = new RBTree(compare);
            for (const val of collection) this.add(val);
        }
    
        size(): number {
            return this._size;
        }
    
        has(val: T): boolean {
            return !!this.tree.find(val);
        }
    
        add(val: T): boolean {
            const successful = this.tree.insert(val);
            this._size += successful ? 1 : 0;
            return successful;
        }
    
        delete(val: T): boolean {
            const deleted = this.tree.deleteAll(val);
            this._size -= deleted ? 1 : 0;
            return deleted;
        }
    
        ceil(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(p.data, val) >= 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        floor(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(val, p.data) >= 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        higher(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(val, p.data) < 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        lower(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(p.data, val) < 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        first(): T | undefined {
            return this.tree.inOrder().next().value;
        }
    
        last(): T | undefined {
            return this.tree.reverseInOrder().next().value;
        }
    
        shift(): T | undefined {
            const first = this.first();
            if (first === undefined) return undefined;
            this.delete(first);
            return first;
        }
    
        pop(): T | undefined {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }
    
        *[Symbol.iterator](): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *keys(): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *values(): Generator<T, undefined, void> {
            for (const val of this.tree.inOrder()) yield val;
            return undefined;
        }
    
        /**
         * Return a generator for reverse order traversing the set
         */
        *rvalues(): Generator<T, undefined, void> {
            for (const val of this.tree.reverseInOrder()) yield val;
            return undefined;
        }
    }
    
    class TreeMultiSet<T = number> {
        _size: number;
        tree: RBTree<T>;
        compare: Compare<T>;
        constructor(
            collection: T[] | Compare<T> = [],
            compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
        ) {
            if (typeof collection === 'function') {
                compare = collection;
                collection = [];
            }
            this._size = 0;
            this.compare = compare;
            this.tree = new RBTree(compare);
            for (const val of collection) this.add(val);
        }
    
        size(): number {
            return this._size;
        }
    
        has(val: T): boolean {
            return !!this.tree.find(val);
        }
    
        add(val: T): boolean {
            const successful = this.tree.insert(val);
            this._size++;
            return successful;
        }
    
        delete(val: T): boolean {
            const successful = this.tree.delete(val);
            if (!successful) return false;
            this._size--;
            return true;
        }
    
        count(val: T): number {
            const node = this.tree.find(val);
            return node ? node.count : 0;
        }
    
        ceil(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(p.data, val) >= 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        floor(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(val, p.data) >= 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        higher(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(val, p.data) < 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        lower(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(p.data, val) < 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        first(): T | undefined {
            return this.tree.inOrder().next().value;
        }
    
        last(): T | undefined {
            return this.tree.reverseInOrder().next().value;
        }
    
        shift(): T | undefined {
            const first = this.first();
            if (first === undefined) return undefined;
            this.delete(first);
            return first;
        }
    
        pop(): T | undefined {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }
    
        *[Symbol.iterator](): Generator<T, void, void> {
            yield* this.values();
        }
    
        *keys(): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *values(): Generator<T, undefined, void> {
            for (const val of this.tree.inOrder()) {
                let count = this.count(val);
                while (count--) yield val;
            }
            return undefined;
        }
    
        /**
         * Return a generator for reverse order traversing the multi-set
         */
        *rvalues(): Generator<T, undefined, void> {
            for (const val of this.tree.reverseInOrder()) {
                let count = this.count(val);
                while (count--) yield val;
            }
            return undefined;
        }
    }
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions