Welcome to Subscribe On Youtube
2559. Count Vowel Strings in Ranges
Description
You are given a 0-indexed array of strings words
and a 2D array of integers queries
.
Each query queries[i] = [li, ri]
asks us to find the number of strings present in the range li
to ri
(both inclusive) of words
that start and end with a vowel.
Return an array ans
of size queries.length
, where ans[i]
is the answer to the i
th query.
Note that the vowel letters are 'a'
, 'e'
, 'i'
, 'o'
, and 'u'
.
Example 1:
Input: words = ["aba","bcb","ece","aa","e"], queries = [[0,2],[1,4],[1,1]] Output: [2,3,0] Explanation: The strings starting and ending with a vowel are "aba", "ece", "aa" and "e". The answer to the query [0,2] is 2 (strings "aba" and "ece"). to query [1,4] is 3 (strings "ece", "aa", "e"). to query [1,1] is 0. We return [2,3,0].
Example 2:
Input: words = ["a","e","i"], queries = [[0,2],[0,1],[2,2]] Output: [3,2,1] Explanation: Every string satisfies the conditions, so we return [3,2,1].
Constraints:
1 <= words.length <= 105
1 <= words[i].length <= 40
words[i]
consists only of lowercase English letters.sum(words[i].length) <= 3 * 105
1 <= queries.length <= 105
0 <= li <= ri < words.length
Solutions
Solution 1: Preprocessing + Binary Search
We can preprocess all the indices of the strings that start and end with a vowel, and record them in order in the array $nums$.
Next, we iterate through each query $(l, r)$, and use binary search to find the first index $i$ in $nums$ that is greater than or equal to $l$, and the first index $j$ that is greater than $r$. Therefore, the answer to the current query is $j - i$.
The time complexity is $O(n + m \times \log n)$, and the space complexity is $O(n)$. Where $n$ and $m$ are the lengths of the arrays $words$ and $queries$, respectively.
Solution 2: Prefix Sum
We can create a prefix sum array $s$ of length $n+1$, where $s[i]$ represents the number of strings that start and end with a vowel in the first $i$ strings of the array $words$. Initially, $s[0] = 0$.
Next, we iterate through the array $words$. If the current string starts and ends with a vowel, then $s[i+1] = s[i] + 1$, otherwise $s[i+1] = s[i]$.
Finally, we iterate through each query $(l, r)$. Therefore, the answer to the current query is $s[r+1] - s[l]$.
The time complexity is $O(n + m)$, and the space complexity is $O(n)$. Where $n$ and $m$ are the lengths of the arrays $words$ and $queries$, respectively.
-
class Solution { private List<Integer> nums = new ArrayList<>(); public int[] vowelStrings(String[] words, int[][] queries) { Set<Character> vowels = Set.of('a', 'e', 'i', 'o', 'u'); for (int i = 0; i < words.length; ++i) { char a = words[i].charAt(0), b = words[i].charAt(words[i].length() - 1); if (vowels.contains(a) && vowels.contains(b)) { nums.add(i); } } int m = queries.length; int[] ans = new int[m]; for (int i = 0; i < m; ++i) { int l = queries[i][0], r = queries[i][1]; ans[i] = search(r + 1) - search(l); } return ans; } private int search(int x) { int l = 0, r = nums.size(); while (l < r) { int mid = (l + r) >> 1; if (nums.get(mid) >= x) { r = mid; } else { l = mid + 1; } } return l; } }
-
class Solution { public: vector<int> vowelStrings(vector<string>& words, vector<vector<int>>& queries) { unordered_set<char> vowels = {'a', 'e', 'i', 'o', 'u'}; vector<int> nums; for (int i = 0; i < words.size(); ++i) { char a = words[i][0], b = words[i].back(); if (vowels.count(a) && vowels.count(b)) { nums.push_back(i); } } vector<int> ans; for (auto& q : queries) { int l = q[0], r = q[1]; int cnt = upper_bound(nums.begin(), nums.end(), r) - lower_bound(nums.begin(), nums.end(), l); ans.push_back(cnt); } return ans; } };
-
class Solution: def vowelStrings(self, words: List[str], queries: List[List[int]]) -> List[int]: vowels = set("aeiou") nums = [i for i, w in enumerate(words) if w[0] in vowels and w[-1] in vowels] return [bisect_right(nums, r) - bisect_left(nums, l) for l, r in queries]
-
func vowelStrings(words []string, queries [][]int) []int { vowels := map[byte]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true} nums := []int{} for i, w := range words { if vowels[w[0]] && vowels[w[len(w)-1]] { nums = append(nums, i) } } ans := make([]int, len(queries)) for i, q := range queries { l, r := q[0], q[1] ans[i] = sort.SearchInts(nums, r+1) - sort.SearchInts(nums, l) } return ans }
-
function vowelStrings(words: string[], queries: number[][]): number[] { const vowels = new Set(['a', 'e', 'i', 'o', 'u']); const nums: number[] = []; for (let i = 0; i < words.length; ++i) { if (vowels.has(words[i][0]) && vowels.has(words[i][words[i].length - 1])) { nums.push(i); } } const search = (x: number): number => { let l = 0, r = nums.length; while (l < r) { const mid = (l + r) >> 1; if (nums[mid] >= x) { r = mid; } else { l = mid + 1; } } return l; }; return queries.map(([l, r]) => search(r + 1) - search(l)); }