Welcome to Subscribe On Youtube
2557. Maximum Number of Integers to Choose From a Range II
Description
You are given an integer array banned
and two integers n
and maxSum
. You are choosing some number of integers following the below rules:
- The chosen integers have to be in the range
[1, n]
. - Each integer can be chosen at most once.
- The chosen integers should not be in the array
banned
. - The sum of the chosen integers should not exceed
maxSum
.
Return the maximum number of integers you can choose following the mentioned rules.
Example 1:
Input: banned = [1,4,6], n = 6, maxSum = 4 Output: 1 Explanation: You can choose the integer 3. 3 is in the range [1, 6], and do not appear in banned. The sum of the chosen integers is 3, which does not exceed maxSum.
Example 2:
Input: banned = [4,3,5,6], n = 7, maxSum = 18 Output: 3 Explanation: You can choose the integers 1, 2, and 7. All these integers are in the range [1, 7], all do not appear in banned, and their sum is 18, which does not exceed maxSum.
Constraints:
1 <= banned.length <= 105
1 <= banned[i] <= n <= 109
1 <= maxSum <= 1015
Solutions
Solution 1: Deduplication + Sorting + Binary Search
We can add $0$ and $n + 1$ to the array banned
, then deduplicate and sort the array banned
.
Next, we enumerate every two adjacent elements $i$ and $j$ in the array banned
. The range of selectable integers is $[i + 1, j - 1]$. We use binary search to enumerate the number of elements we can select in this range, find the maximum number of selectable elements, and then add it to $ans$. At the same time, we subtract the sum of these elements from maxSum
. If maxSum
is less than $0$, we break the loop. Return the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array banned
.
-
class Solution { public int maxCount(int[] banned, int n, long maxSum) { Set<Integer> black = new HashSet<>(); black.add(0); black.add(n + 1); for (int x : banned) { black.add(x); } List<Integer> ban = new ArrayList<>(black); Collections.sort(ban); int ans = 0; for (int k = 1; k < ban.size(); ++k) { int i = ban.get(k - 1), j = ban.get(k); int left = 0, right = j - i - 1; while (left < right) { int mid = (left + right + 1) >>> 1; if ((i + 1 + i + mid) * 1L * mid / 2 <= maxSum) { left = mid; } else { right = mid - 1; } } ans += left; maxSum -= (i + 1 + i + left) * 1L * left / 2; if (maxSum <= 0) { break; } } return ans; } }
-
class Solution { public: int maxCount(vector<int>& banned, int n, long long maxSum) { banned.push_back(0); banned.push_back(n + 1); sort(banned.begin(), banned.end()); banned.erase(unique(banned.begin(), banned.end()), banned.end()); int ans = 0; for (int k = 1; k < banned.size(); ++k) { int i = banned[k - 1], j = banned[k]; int left = 0, right = j - i - 1; while (left < right) { int mid = left + ((right - left + 1) / 2); if ((i + 1 + i + mid) * 1LL * mid / 2 <= maxSum) { left = mid; } else { right = mid - 1; } } ans += left; maxSum -= (i + 1 + i + left) * 1LL * left / 2; if (maxSum <= 0) { break; } } return ans; } };
-
class Solution: def maxCount(self, banned: List[int], n: int, maxSum: int) -> int: banned.extend([0, n + 1]) ban = sorted(set(banned)) ans = 0 for i, j in pairwise(ban): left, right = 0, j - i - 1 while left < right: mid = (left + right + 1) >> 1 if (i + 1 + i + mid) * mid // 2 <= maxSum: left = mid else: right = mid - 1 ans += left maxSum -= (i + 1 + i + left) * left // 2 if maxSum <= 0: break return ans
-
func maxCount(banned []int, n int, maxSum int64) (ans int) { banned = append(banned, []int{0, n + 1}...) sort.Ints(banned) ban := []int{} for i, x := range banned { if i > 0 && x == banned[i-1] { continue } ban = append(ban, x) } for k := 1; k < len(ban); k++ { i, j := ban[k-1], ban[k] left, right := 0, j-i-1 for left < right { mid := (left + right + 1) >> 1 if int64((i+1+i+mid)*mid/2) <= maxSum { left = mid } else { right = mid - 1 } } ans += left maxSum -= int64((i + 1 + i + left) * left / 2) if maxSum <= 0 { break } } return }