Welcome to Subscribe On Youtube

2541. Minimum Operations to Make Array Equal II

Description

You are given two integer arrays nums1 and nums2 of equal length n and an integer k. You can perform the following operation on nums1:

  • Choose two indexes i and j and increment nums1[i] by k and decrement nums1[j] by k. In other words, nums1[i] = nums1[i] + k and nums1[j] = nums1[j] - k.

nums1 is said to be equal to nums2 if for all indices i such that 0 <= i < n, nums1[i] == nums2[i].

Return the minimum number of operations required to make nums1 equal to nums2. If it is impossible to make them equal, return -1.

 

Example 1:

Input: nums1 = [4,3,1,4], nums2 = [1,3,7,1], k = 3
Output: 2
Explanation: In 2 operations, we can transform nums1 to nums2.
1st operation: i = 2, j = 0. After applying the operation, nums1 = [1,3,4,4].
2nd operation: i = 2, j = 3. After applying the operation, nums1 = [1,3,7,1].
One can prove that it is impossible to make arrays equal in fewer operations.

Example 2:

Input: nums1 = [3,8,5,2], nums2 = [2,4,1,6], k = 1
Output: -1
Explanation: It can be proved that it is impossible to make the two arrays equal.

 

Constraints:

  • n == nums1.length == nums2.length
  • 2 <= n <= 105
  • 0 <= nums1[i], nums2[j] <= 109
  • 0 <= k <= 105

Solutions

Solution 1: Single Pass

We use a variable $x$ to record the difference in the number of additions and subtractions, and a variable $ans$ to record the number of operations.

We traverse the array, and for each position $i$, if $k=0$ and $a_i \neq b_i$, then it is impossible to make the two arrays equal, so we return $-1$. Otherwise, if $k \neq 0$, then $a_i - b_i$ must be a multiple of $k$, otherwise it is impossible to make the two arrays equal, so we return $-1$. Next, we update $x$ and $ans$.

Finally, if $x \neq 0$, then it is impossible to make the two arrays equal, so we return $-1$. Otherwise, we return $\frac{ans}{2}$.

The time complexity is $O(n)$, and the space complexity is $O(1)$, where $n$ is the length of the array.

  • class Solution {
        public long minOperations(int[] nums1, int[] nums2, int k) {
            long ans = 0, x = 0;
            for (int i = 0; i < nums1.length; ++i) {
                int a = nums1[i], b = nums2[i];
                if (k == 0) {
                    if (a != b) {
                        return -1;
                    }
                    continue;
                }
                if ((a - b) % k != 0) {
                    return -1;
                }
                int y = (a - b) / k;
                ans += Math.abs(y);
                x += y;
            }
            return x == 0 ? ans / 2 : -1;
        }
    }
    
  • class Solution {
    public:
        long long minOperations(vector<int>& nums1, vector<int>& nums2, int k) {
            long long ans = 0, x = 0;
            for (int i = 0; i < nums1.size(); ++i) {
                int a = nums1[i], b = nums2[i];
                if (k == 0) {
                    if (a != b) {
                        return -1;
                    }
                    continue;
                }
                if ((a - b) % k != 0) {
                    return -1;
                }
                int y = (a - b) / k;
                ans += abs(y);
                x += y;
            }
            return x == 0 ? ans / 2 : -1;
        }
    };
    
  • class Solution:
        def minOperations(self, nums1: List[int], nums2: List[int], k: int) -> int:
            ans = x = 0
            for a, b in zip(nums1, nums2):
                if k == 0:
                    if a != b:
                        return -1
                    continue
                if (a - b) % k:
                    return -1
                y = (a - b) // k
                ans += abs(y)
                x += y
            return -1 if x else ans // 2
    
    
  • func minOperations(nums1 []int, nums2 []int, k int) int64 {
    	ans, x := 0, 0
    	for i, a := range nums1 {
    		b := nums2[i]
    		if k == 0 {
    			if a != b {
    				return -1
    			}
    			continue
    		}
    		if (a-b)%k != 0 {
    			return -1
    		}
    		y := (a - b) / k
    		ans += abs(y)
    		x += y
    	}
    	if x != 0 {
    		return -1
    	}
    	return int64(ans / 2)
    }
    
    func abs(x int) int {
    	if x < 0 {
    		return -x
    	}
    	return x
    }
    
  • function minOperations(nums1: number[], nums2: number[], k: number): number {
        const n = nums1.length;
        if (k === 0) {
            return nums1.every((v, i) => v === nums2[i]) ? 0 : -1;
        }
        let sum1 = 0;
        let sum2 = 0;
        for (let i = 0; i < n; i++) {
            const diff = nums1[i] - nums2[i];
            sum1 += diff;
            if (diff % k !== 0) {
                return -1;
            }
            sum2 += Math.abs(diff);
        }
        if (sum1 !== 0) {
            return -1;
        }
        return sum2 / (k * 2);
    }
    
    
  • impl Solution {
        pub fn min_operations(nums1: Vec<i32>, nums2: Vec<i32>, k: i32) -> i64 {
            let k = k as i64;
            let n = nums1.len();
            if k == 0 {
                return if
                    nums1
                        .iter()
                        .enumerate()
                        .all(|(i, &v)| v == nums2[i])
                {
                    0
                } else {
                    -1
                };
            }
            let mut sum1 = 0;
            let mut sum2 = 0;
            for i in 0..n {
                let diff = (nums1[i] - nums2[i]) as i64;
                sum1 += diff;
                if diff % k != 0 {
                    return -1;
                }
                sum2 += diff.abs();
            }
            if sum1 != 0 {
                return -1;
            }
            sum2 / (k * 2)
        }
    }
    
    

All Problems

All Solutions