Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2420.html

2420. Find All Good Indices

  • Difficulty: Medium.
  • Related Topics: .
  • Similar Questions: Find Good Days to Rob the Bank, Abbreviating the Product of a Range.

Problem

You are given a 0-indexed integer array nums of size n and a positive integer k.

We call an index i in the range k <= i < n - k good if the following conditions are satisfied:

  • The k elements that are just before the index i are in non-increasing order.

  • The k elements that are just after the index i are in non-decreasing order.

Return an array of all good indices sorted in **increasing order**.

  Example 1:

Input: nums = [2,1,1,1,3,4,1], k = 2
Output: [2,3]
Explanation: There are two good indices in the array:
- Index 2. The subarray [2,1] is in non-increasing order, and the subarray [1,3] is in non-decreasing order.
- Index 3. The subarray [1,1] is in non-increasing order, and the subarray [3,4] is in non-decreasing order.
Note that the index 4 is not good because [4,1] is not non-decreasing.

Example 2:

Input: nums = [2,1,1,2], k = 2
Output: []
Explanation: There are no good indices in this array.

  Constraints:

  • n == nums.length

  • 3 <= n <= 10^5

  • 1 <= nums[i] <= 10^6

  • 1 <= k <= n / 2

Solution (Java, C++, Python)

  • class Solution {
        public List<Integer> goodIndices(int[] nums, int k) {
            int n = nums.length;
            int[] decr = new int[n];
            int[] incr = new int[n];
            Arrays.fill(decr, 1);
            Arrays.fill(incr, 1);
            for (int i = 2; i < n - 1; ++i) {
                if (nums[i - 1] <= nums[i - 2]) {
                    decr[i] = decr[i - 1] + 1;
                }
            }
            for (int i = n - 3; i >= 0; --i) {
                if (nums[i + 1] <= nums[i + 2]) {
                    incr[i] = incr[i + 1] + 1;
                }
            }
            List<Integer> ans = new ArrayList<>();
            for (int i = k; i < n - k; ++i) {
                if (decr[i] >= k && incr[i] >= k) {
                    ans.add(i);
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        vector<int> goodIndices(vector<int>& nums, int k) {
            int n = nums.size();
            vector<int> decr(n, 1);
            vector<int> incr(n, 1);
            for (int i = 2; i < n; ++i) {
                if (nums[i - 1] <= nums[i - 2]) {
                    decr[i] = decr[i - 1] + 1;
                }
            }
            for (int i = n - 3; ~i; --i) {
                if (nums[i + 1] <= nums[i + 2]) {
                    incr[i] = incr[i + 1] + 1;
                }
            }
            vector<int> ans;
            for (int i = k; i < n - k; ++i) {
                if (decr[i] >= k && incr[i] >= k) {
                    ans.push_back(i);
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def goodIndices(self, nums: List[int], k: int) -> List[int]:
            n = len(nums)
            decr = [1] * (n + 1)
            incr = [1] * (n + 1)
            for i in range(2, n - 1):
                if nums[i - 1] <= nums[i - 2]:
                    decr[i] = decr[i - 1] + 1
            for i in range(n - 3, -1, -1):
                if nums[i + 1] <= nums[i + 2]:
                    incr[i] = incr[i + 1] + 1
            return [i for i in range(k, n - k) if decr[i] >= k and incr[i] >= k]
    
    
  • func goodIndices(nums []int, k int) []int {
    	n := len(nums)
    	decr := make([]int, n)
    	incr := make([]int, n)
    	for i := range decr {
    		decr[i] = 1
    		incr[i] = 1
    	}
    	for i := 2; i < n; i++ {
    		if nums[i-1] <= nums[i-2] {
    			decr[i] = decr[i-1] + 1
    		}
    	}
    	for i := n - 3; i >= 0; i-- {
    		if nums[i+1] <= nums[i+2] {
    			incr[i] = incr[i+1] + 1
    		}
    	}
    	ans := []int{}
    	for i := k; i < n-k; i++ {
    		if decr[i] >= k && incr[i] >= k {
    			ans = append(ans, i)
    		}
    	}
    	return ans
    }
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions