Welcome to Subscribe On Youtube

2533. Number of Good Binary Strings

Description

You are given four integers minLength, maxLength, oneGroup and zeroGroup.

A binary string is good if it satisfies the following conditions:

  • The length of the string is in the range [minLength, maxLength].
  • The size of each block of consecutive 1's is a multiple of oneGroup.
    • For example in a binary string 00110111100 sizes of each block of consecutive ones are [2,4].
  • The size of each block of consecutive 0's is a multiple of zeroGroup.
    • For example, in a binary string 00110111100 sizes of each block of consecutive zeros are [2,1,2].

Return the number of good binary strings. Since the answer may be too large, return it modulo 109 + 7.

Note that 0 is considered a multiple of all the numbers.

 

Example 1:

Input: minLength = 2, maxLength = 3, oneGroup = 1, zeroGroup = 2
Output: 5
Explanation: There are 5 good binary strings in this example: "00", "11", "001", "100", and "111".
It can be proven that there are only 5 good strings satisfying all conditions.

Example 2:

Input: minLength = 4, maxLength = 4, oneGroup = 4, zeroGroup = 3
Output: 1
Explanation: There is only 1 good binary string in this example: "1111".
It can be proven that there is only 1 good string satisfying all conditions.

 

Constraints:

  • 1 <= minLength <= maxLength <= 105
  • 1 <= oneGroup, zeroGroup <= maxLength

Solutions

Solution 1: Dynamic Programming

We define $f[i]$ as the number of strings of length $i$ that meet the condition. The state transition equation is:

\[f[i] = \begin{cases} 1 & i = 0 \\ f[i - oneGroup] + f[i - zeroGroup] & i \geq 1 \end{cases}\]

The final answer is $f[minLength] + f[minLength + 1] + \cdots + f[maxLength]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n=maxLength$.

  • class Solution {
        public int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
            final int mod = (int) 1e9 + 7;
            int[] f = new int[maxLength + 1];
            f[0] = 1;
            for (int i = 1; i <= maxLength; ++i) {
                if (i - oneGroup >= 0) {
                    f[i] = (f[i] + f[i - oneGroup]) % mod;
                }
                if (i - zeroGroup >= 0) {
                    f[i] = (f[i] + f[i - zeroGroup]) % mod;
                }
            }
            int ans = 0;
            for (int i = minLength; i <= maxLength; ++i) {
                ans = (ans + f[i]) % mod;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
            const int mod = 1e9 + 7;
            int f[maxLength + 1];
            memset(f, 0, sizeof f);
            f[0] = 1;
            for (int i = 1; i <= maxLength; ++i) {
                if (i - oneGroup >= 0) {
                    f[i] = (f[i] + f[i - oneGroup]) % mod;
                }
                if (i - zeroGroup >= 0) {
                    f[i] = (f[i] + f[i - zeroGroup]) % mod;
                }
            }
            int ans = 0;
            for (int i = minLength; i <= maxLength; ++i) {
                ans = (ans + f[i]) % mod;
            }
            return ans;
        }
    };
    
  • class Solution:
        def goodBinaryStrings(
            self, minLength: int, maxLength: int, oneGroup: int, zeroGroup: int
        ) -> int:
            mod = 10**9 + 7
            f = [1] + [0] * maxLength
            for i in range(1, len(f)):
                if i - oneGroup >= 0:
                    f[i] += f[i - oneGroup]
                if i - zeroGroup >= 0:
                    f[i] += f[i - zeroGroup]
                f[i] %= mod
            return sum(f[minLength:]) % mod
    
    
  • func goodBinaryStrings(minLength int, maxLength int, oneGroup int, zeroGroup int) (ans int) {
    	const mod int = 1e9 + 7
    	f := make([]int, maxLength+1)
    	f[0] = 1
    	for i := 1; i <= maxLength; i++ {
    		if i-oneGroup >= 0 {
    			f[i] += f[i-oneGroup]
    		}
    		if i-zeroGroup >= 0 {
    			f[i] += f[i-zeroGroup]
    		}
    		f[i] %= mod
    	}
    	for _, v := range f[minLength:] {
    		ans = (ans + v) % mod
    	}
    	return
    }
    
  • function goodBinaryStrings(
        minLength: number,
        maxLength: number,
        oneGroup: number,
        zeroGroup: number,
    ): number {
        const mod = 10 ** 9 + 7;
        const f: number[] = Array(maxLength + 1).fill(0);
        f[0] = 1;
        for (let i = 1; i <= maxLength; ++i) {
            if (i >= oneGroup) {
                f[i] += f[i - oneGroup];
            }
            if (i >= zeroGroup) {
                f[i] += f[i - zeroGroup];
            }
            f[i] %= mod;
        }
        return f.slice(minLength).reduce((a, b) => a + b, 0) % mod;
    }
    
    

All Problems

All Solutions