Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2415.html

2415. Reverse Odd Levels of Binary Tree

  • Difficulty: Medium.
  • Related Topics: .
  • Similar Questions: Invert Binary Tree.

Problem

Given the root of a perfect binary tree, reverse the node values at each odd level of the tree.

  • For example, suppose the node values at level 3 are [2,1,3,4,7,11,29,18], then it should become [18,29,11,7,4,3,1,2].

Return the root of the reversed tree.

A binary tree is perfect if all parent nodes have two children and all leaves are on the same level.

The level of a node is the number of edges along the path between it and the root node.

  Example 1:

Input: root = [2,3,5,8,13,21,34]
Output: [2,5,3,8,13,21,34]
Explanation: 
The tree has only one odd level.
The nodes at level 1 are 3, 5 respectively, which are reversed and become 5, 3.

Example 2:

Input: root = [7,13,11]
Output: [7,11,13]
Explanation: 
The nodes at level 1 are 13, 11, which are reversed and become 11, 13.

Example 3:

Input: root = [0,1,2,0,0,0,0,1,1,1,1,2,2,2,2]
Output: [0,2,1,0,0,0,0,2,2,2,2,1,1,1,1]
Explanation: 
The odd levels have non-zero values.
The nodes at level 1 were 1, 2, and are 2, 1 after the reversal.
The nodes at level 3 were 1, 1, 1, 1, 2, 2, 2, 2, and are 2, 2, 2, 2, 1, 1, 1, 1 after the reversal.

  Constraints:

  • The number of nodes in the tree is in the range [1, 214].

  • 0 <= Node.val <= 105

  • root is a perfect binary tree.

Solution (Java, C++, Python)

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public TreeNode reverseOddLevels(TreeNode root) {
            if(root == null)
                return root;
            
            Queue<TreeNode> queue = new LinkedList<>();
            int level = 0;
    
            queue.add(root);
    
            while (!queue.isEmpty()) {
                int size = queue.size();
                level++;
    
                TreeNode[] arr = new TreeNode[size];
    
                for (int i = 0; i < size; i++) {
                    TreeNode cur = queue.poll();
                    arr[i] = cur;
                    
                    if(cur.left != null){
                        queue.add(cur.left);
                        queue.add(cur.right);
                    }
                }
    
                if (level % 2 == 0) {
                    int left = 0;
                    int right = size - 1;
    
                    while (left < right) {
                        int leftVal = arr[left].val;
                        arr[left].val = arr[right].val;
                        arr[right].val = leftVal;
    
                        left++;
                        right--;
                    }
                }
            }
    
            return root;
        }
    }
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def reverseOddLevels(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
            q = deque([root])
            i = 0
            while q:
                t = []
                for _ in range(len(q)):
                    node = q.popleft()
                    if i & 1:
                        t.append(node)
                    if node.left:
                        q.append(node.left)
                    if node.right:
                        q.append(node.right)
                if t:
                    j, k = 0, len(t) - 1
                    while j < k:
                        t[j].val, t[k].val = t[k].val, t[j].val
                        j, k = j + 1, k - 1
                i += 1
            return root
    
    ############
    
    # 2415. Reverse Odd Levels of Binary Tree
    # https://leetcode.com/problems/reverse-odd-levels-of-binary-tree/
    
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def reverseOddLevels(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
            res = []
            
            dq = deque([root])
            level = 0
            
            while dq:
                n = len(dq)
                curr = []
                
                for _ in range(n):
                    node = dq.popleft()
                    curr.append(node.val)
                    
                    for child in filter(None, (node.left, node.right)):
                        dq.append(child)
                
                if level % 2 == 1:
                    curr.reverse()
                
                res += curr
                level += 1
                
            n = len(res)
            
            def go(i):
                root = None
                
                if i < n:
                    root = TreeNode(res[i]) 
    
                    # insert left child 
                    root.left = go(2 * i + 1)
    
                    # insert right child 
                    root.right = go(2 * i + 2)
    
                return root
            
            return go(0)
    
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        TreeNode* reverseOddLevels(TreeNode* root) {
            queue<TreeNode*> q{ {root} };
            int i = 0;
            vector<TreeNode*> t;
            while (!q.empty()) {
                t.clear();
                for (int n = q.size(); n; --n) {
                    TreeNode* node = q.front();
                    q.pop();
                    if (i & 1) {
                        t.push_back(node);
                    }
                    if (node->left) {
                        q.push(node->left);
                    }
                    if (node->right) {
                        q.push(node->right);
                    }
                }
                if (t.size()) {
                    int j = 0, k = t.size() - 1;
                    for (; j < k; ++j, --k) {
                        int v = t[j]->val;
                        t[j]->val = t[k]->val;
                        t[k]->val = v;
                    }
                }
                ++i;
            }
            return root;
        }
    };
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func reverseOddLevels(root *TreeNode) *TreeNode {
    	q := []*TreeNode{root}
    	i := 0
    	for len(q) > 0 {
    		t := []*TreeNode{}
    		for n := len(q); n > 0; n-- {
    			node := q[0]
    			q = q[1:]
    			if i%2 == 1 {
    				t = append(t, node)
    			}
    			if node.Left != nil {
    				q = append(q, node.Left)
    			}
    			if node.Right != nil {
    				q = append(q, node.Right)
    			}
    		}
    		if len(t) > 0 {
    			j, k := 0, len(t)-1
    			for ; j < k; j, k = j+1, k-1 {
    				v := t[j].Val
    				t[j].Val = t[k].Val
    				t[k].Val = v
    			}
    		}
    		i++
    	}
    	return root
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function reverseOddLevels(root: TreeNode | null): TreeNode | null {
        const queue = [root];
        let d = 0;
        while (queue.length !== 0) {
            const n = queue.length;
            const t: TreeNode[] = [];
            for (let i = 0; i < n; i++) {
                const node = queue.shift();
                if (d % 2 == 1) {
                    t.push(node);
                }
                node.left && queue.push(node.left);
                node.right && queue.push(node.right);
            }
            const m = t.length;
            for (let i = 0; i < m >> 1; i++) {
                [t[i].val, t[m - 1 - i].val] = [t[m - 1 - i].val, t[i].val];
            }
            d++;
        }
        return root;
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    use std::collections::VecDeque;
    impl Solution {
        fn create_tree(vals: &Vec<Vec<i32>>, i: usize, j: usize) -> Option<Rc<RefCell<TreeNode>>> {
            if i == vals.len() {
                return None;
            }
            Some(Rc::new(RefCell::new(TreeNode {
                val: vals[i][j],
                left: Self::create_tree(vals, i + 1, j * 2),
                right: Self::create_tree(vals, i + 1, j * 2 + 1),
            })))
        }
    
        pub fn reverse_odd_levels(
            root: Option<Rc<RefCell<TreeNode>>>,
        ) -> Option<Rc<RefCell<TreeNode>>> {
            let mut queue = VecDeque::new();
            queue.push_back(root);
            let mut d = 0;
            let mut vals = Vec::new();
            while !queue.is_empty() {
                let mut val = Vec::new();
                for _ in 0..queue.len() {
                    let mut node = queue.pop_front().unwrap();
                    let mut node = node.as_mut().unwrap().borrow_mut();
                    val.push(node.val);
                    if node.left.is_some() {
                        queue.push_back(node.left.take());
                    }
                    if node.right.is_some() {
                        queue.push_back(node.right.take());
                    }
                }
                if d % 2 == 1 {
                    val.reverse();
                }
                vals.push(val);
                d += 1;
            }
            Self::create_tree(&vals, 0, 0)
        }
    }
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions