Welcome to Subscribe On Youtube
2522. Partition String Into Substrings With Values at Most K
Description
You are given a string s
consisting of digits from 1
to 9
and an integer k
.
A partition of a string s
is called good if:
- Each digit of
s
is part of exactly one substring. - The value of each substring is less than or equal to
k
.
Return the minimum number of substrings in a good partition of s
. If no good partition of s
exists, return -1
.
Note that:
- The value of a string is its result when interpreted as an integer. For example, the value of
"123"
is123
and the value of"1"
is1
. - A substring is a contiguous sequence of characters within a string.
Example 1:
Input: s = "165462", k = 60 Output: 4 Explanation: We can partition the string into substrings "16", "54", "6", and "2". Each substring has a value less than or equal to k = 60. It can be shown that we cannot partition the string into less than 4 substrings.
Example 2:
Input: s = "238182", k = 5 Output: -1 Explanation: There is no good partition for this string.
Constraints:
1 <= s.length <= 105
s[i]
is a digit from'1'
to'9'
.1 <= k <= 109
Solutions
-
class Solution { private Integer[] f; private int n; private String s; private int k; private int inf = 1 << 30; public int minimumPartition(String s, int k) { n = s.length(); f = new Integer[n]; this.s = s; this.k = k; int ans = dfs(0); return ans < inf ? ans : -1; } private int dfs(int i) { if (i >= n) { return 0; } if (f[i] != null) { return f[i]; } int res = inf; long v = 0; for (int j = i; j < n; ++j) { v = v * 10 + (s.charAt(j) - '0'); if (v > k) { break; } res = Math.min(res, dfs(j + 1)); } return f[i] = res + 1; } }
-
class Solution { public: int minimumPartition(string s, int k) { int n = s.size(); int f[n]; memset(f, 0, sizeof f); const int inf = 1 << 30; function<int(int)> dfs = [&](int i) -> int { if (i >= n) return 0; if (f[i]) return f[i]; int res = inf; long v = 0; for (int j = i; j < n; ++j) { v = v * 10 + (s[j] - '0'); if (v > k) break; res = min(res, dfs(j + 1)); } return f[i] = res + 1; }; int ans = dfs(0); return ans < inf ? ans : -1; } };
-
class Solution: def minimumPartition(self, s: str, k: int) -> int: @cache def dfs(i): if i >= n: return 0 res, v = inf, 0 for j in range(i, n): v = v * 10 + int(s[j]) if v > k: break res = min(res, dfs(j + 1)) return res + 1 n = len(s) ans = dfs(0) return ans if ans < inf else -1
-
func minimumPartition(s string, k int) int { n := len(s) f := make([]int, n) const inf int = 1 << 30 var dfs func(int) int dfs = func(i int) int { if i >= n { return 0 } if f[i] > 0 { return f[i] } res, v := inf, 0 for j := i; j < n; j++ { v = v*10 + int(s[j]-'0') if v > k { break } res = min(res, dfs(j+1)) } f[i] = res + 1 return f[i] } ans := dfs(0) if ans < inf { return ans } return -1 }