Welcome to Subscribe On Youtube
2513. Minimize the Maximum of Two Arrays
Description
We have two arrays arr1
and arr2
which are initially empty. You need to add positive integers to them such that they satisfy all the following conditions:
arr1
containsuniqueCnt1
distinct positive integers, each of which is not divisible bydivisor1
.arr2
containsuniqueCnt2
distinct positive integers, each of which is not divisible bydivisor2
.- No integer is present in both
arr1
andarr2
.
Given divisor1
, divisor2
, uniqueCnt1
, and uniqueCnt2
, return the minimum possible maximum integer that can be present in either array.
Example 1:
Input: divisor1 = 2, divisor2 = 7, uniqueCnt1 = 1, uniqueCnt2 = 3 Output: 4 Explanation: We can distribute the first 4 natural numbers into arr1 and arr2. arr1 = [1] and arr2 = [2,3,4]. We can see that both arrays satisfy all the conditions. Since the maximum value is 4, we return it.
Example 2:
Input: divisor1 = 3, divisor2 = 5, uniqueCnt1 = 2, uniqueCnt2 = 1 Output: 3 Explanation: Here arr1 = [1,2], and arr2 = [3] satisfy all conditions. Since the maximum value is 3, we return it.
Example 3:
Input: divisor1 = 2, divisor2 = 4, uniqueCnt1 = 8, uniqueCnt2 = 2 Output: 15 Explanation: Here, the final possible arrays can be arr1 = [1,3,5,7,9,11,13,15], and arr2 = [2,6]. It can be shown that it is not possible to obtain a lower maximum satisfying all conditions.
Constraints:
2 <= divisor1, divisor2 <= 105
1 <= uniqueCnt1, uniqueCnt2 < 109
2 <= uniqueCnt1 + uniqueCnt2 <= 109
Solutions
-
class Solution { public int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) { long divisor = lcm(divisor1, divisor2); long left = 1, right = 10000000000L; while (left < right) { long mid = (left + right) >> 1; long cnt1 = mid / divisor1 * (divisor1 - 1) + mid % divisor1; long cnt2 = mid / divisor2 * (divisor2 - 1) + mid % divisor2; long cnt = mid / divisor * (divisor - 1) + mid % divisor; if (cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1 + uniqueCnt2) { right = mid; } else { left = mid + 1; } } return (int) left; } private long lcm(int a, int b) { return (long) a * b / gcd(a, b); } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } }
-
class Solution { public: int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) { long left = 1, right = 1e10; long divisor = lcm((long) divisor1, (long) divisor2); while (left < right) { long mid = (left + right) >> 1; long cnt1 = mid / divisor1 * (divisor1 - 1) + mid % divisor1; long cnt2 = mid / divisor2 * (divisor2 - 1) + mid % divisor2; long cnt = mid / divisor * (divisor - 1) + mid % divisor; if (cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1 + uniqueCnt2) { right = mid; } else { left = mid + 1; } } return left; } };
-
class Solution: def minimizeSet( self, divisor1: int, divisor2: int, uniqueCnt1: int, uniqueCnt2: int ) -> int: def f(x): cnt1 = x // divisor1 * (divisor1 - 1) + x % divisor1 cnt2 = x // divisor2 * (divisor2 - 1) + x % divisor2 cnt = x // divisor * (divisor - 1) + x % divisor return ( cnt1 >= uniqueCnt1 and cnt2 >= uniqueCnt2 and cnt >= uniqueCnt1 + uniqueCnt2 ) divisor = lcm(divisor1, divisor2) return bisect_left(range(10**10), True, key=f)
-
func minimizeSet(divisor1 int, divisor2 int, uniqueCnt1 int, uniqueCnt2 int) int { divisor := lcm(divisor1, divisor2) left, right := 1, 10000000000 for left < right { mid := (left + right) >> 1 cnt1 := mid/divisor1*(divisor1-1) + mid%divisor1 cnt2 := mid/divisor2*(divisor2-1) + mid%divisor2 cnt := mid/divisor*(divisor-1) + mid%divisor if cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1+uniqueCnt2 { right = mid } else { left = mid + 1 } } return left } func lcm(a, b int) int { return a * b / gcd(a, b) } func gcd(a, b int) int { if b == 0 { return a } return gcd(b, a%b) }