Welcome to Subscribe On Youtube
2497. Maximum Star Sum of a Graph
Description
There is an undirected graph consisting of n
nodes numbered from 0
to n - 1
. You are given a 0-indexed integer array vals
of length n
where vals[i]
denotes the value of the ith
node.
You are also given a 2D integer array edges
where edges[i] = [ai, bi]
denotes that there exists an undirected edge connecting nodes ai
and bi.
A star graph is a subgraph of the given graph having a center node containing 0
or more neighbors. In other words, it is a subset of edges of the given graph such that there exists a common node for all edges.
The image below shows star graphs with 3
and 4
neighbors respectively, centered at the blue node.
The star sum is the sum of the values of all the nodes present in the star graph.
Given an integer k
, return the maximum star sum of a star graph containing at most k
edges.
Example 1:
Input: vals = [1,2,3,4,10,-10,-20], edges = [[0,1],[1,2],[1,3],[3,4],[3,5],[3,6]], k = 2 Output: 16 Explanation: The above diagram represents the input graph. The star graph with the maximum star sum is denoted by blue. It is centered at 3 and includes its neighbors 1 and 4. It can be shown it is not possible to get a star graph with a sum greater than 16.
Example 2:
Input: vals = [-5], edges = [], k = 0 Output: -5 Explanation: There is only one possible star graph, which is node 0 itself. Hence, we return -5.
Constraints:
n == vals.length
1 <= n <= 105
-104 <= vals[i] <= 104
0 <= edges.length <= min(n * (n - 1) / 2
, 105)
edges[i].length == 2
0 <= ai, bi <= n - 1
ai != bi
0 <= k <= n - 1
Solutions
-
class Solution { public int maxStarSum(int[] vals, int[][] edges, int k) { int n = vals.length; List<Integer>[] g = new List[n]; Arrays.setAll(g, key -> new ArrayList<>()); for (var e : edges) { int a = e[0], b = e[1]; if (vals[b] > 0) { g[a].add(vals[b]); } if (vals[a] > 0) { g[b].add(vals[a]); } } for (var e : g) { Collections.sort(e, (a, b) -> b - a); } int ans = Integer.MIN_VALUE; for (int i = 0; i < n; ++i) { int v = vals[i]; for (int j = 0; j < Math.min(g[i].size(), k); ++j) { v += g[i].get(j); } ans = Math.max(ans, v); } return ans; } }
-
class Solution { public: int maxStarSum(vector<int>& vals, vector<vector<int>>& edges, int k) { int n = vals.size(); vector<vector<int>> g(n); for (auto& e : edges) { int a = e[0], b = e[1]; if (vals[b] > 0) g[a].emplace_back(vals[b]); if (vals[a] > 0) g[b].emplace_back(vals[a]); } for (auto& e : g) sort(e.rbegin(), e.rend()); int ans = INT_MIN; for (int i = 0; i < n; ++i) { int v = vals[i]; for (int j = 0; j < min((int) g[i].size(), k); ++j) v += g[i][j]; ans = max(ans, v); } return ans; } };
-
class Solution: def maxStarSum(self, vals: List[int], edges: List[List[int]], k: int) -> int: g = defaultdict(list) for a, b in edges: if vals[b] > 0: g[a].append(vals[b]) if vals[a] > 0: g[b].append(vals[a]) for bs in g.values(): bs.sort(reverse=True) return max(v + sum(g[i][:k]) for i, v in enumerate(vals))
-
func maxStarSum(vals []int, edges [][]int, k int) (ans int) { n := len(vals) g := make([][]int, n) for _, e := range edges { a, b := e[0], e[1] if vals[b] > 0 { g[a] = append(g[a], vals[b]) } if vals[a] > 0 { g[b] = append(g[b], vals[a]) } } for _, e := range g { sort.Sort(sort.Reverse(sort.IntSlice(e))) } ans = math.MinInt32 for i, v := range vals { for j := 0; j < min(len(g[i]), k); j++ { v += g[i][j] } ans = max(ans, v) } return }