Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2382.html

2382. Maximum Segment Sum After Removals

  • Difficulty: Hard.
  • Related Topics: Array, Union Find, Prefix Sum, Ordered Set.
  • Similar Questions: .

Problem

You are given two 0-indexed integer arrays nums and removeQueries, both of length n. For the ith query, the element in nums at the index removeQueries[i] is removed, splitting nums into different segments.

A segment is a contiguous sequence of positive integers in nums. A segment sum is the sum of every element in a segment.

Return** an integer array answer, of length n, where answer[i] is the maximum segment sum after applying the ith **removal.

Note: The same index will not be removed more than once.

  Example 1:

Input: nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1]
Output: [14,7,2,2,0]
Explanation: Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 0th element, nums becomes [0,2,5,6,1] and the maximum segment sum is 14 for segment [2,5,6,1].
Query 2: Remove the 3rd element, nums becomes [0,2,5,0,1] and the maximum segment sum is 7 for segment [2,5].
Query 3: Remove the 2nd element, nums becomes [0,2,0,0,1] and the maximum segment sum is 2 for segment [2]. 
Query 4: Remove the 4th element, nums becomes [0,2,0,0,0] and the maximum segment sum is 2 for segment [2]. 
Query 5: Remove the 1st element, nums becomes [0,0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [14,7,2,2,0].

Example 2:

Input: nums = [3,2,11,1], removeQueries = [3,2,1,0]
Output: [16,5,3,0]
Explanation: Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 3rd element, nums becomes [3,2,11,0] and the maximum segment sum is 16 for segment [3,2,11].
Query 2: Remove the 2nd element, nums becomes [3,2,0,0] and the maximum segment sum is 5 for segment [3,2].
Query 3: Remove the 1st element, nums becomes [3,0,0,0] and the maximum segment sum is 3 for segment [3].
Query 4: Remove the 0th element, nums becomes [0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [16,5,3,0].

  Constraints:

  • n == nums.length == removeQueries.length

  • 1 <= n <= 105

  • 1 <= nums[i] <= 109

  • 0 <= removeQueries[i] < n

  • All the values of removeQueries are unique.

Solution

  • class Solution {
        private static class UF {
            int[] root;
            long[] sum;
    
            public UF(int n) {
                this.root = new int[n];
                Arrays.fill(this.root, -1);
                this.sum = new long[n];
            }
    
            public void insert(int x, int value) {
                if (root[x] != -1 || sum[x] != 0) {
                    return;
                }
                this.root[x] = x;
                this.sum[x] = value;
            }
    
            public int find(int x) {
                while (root[x] != x) {
                    int fa = root[x];
                    int ga = root[fa];
                    root[x] = ga;
                    x = fa;
                }
                return x;
            }
    
            public void union(int x, int y) {
                int rx = find(x);
                int ry = find(y);
                if (x == y) {
                    return;
                }
                root[rx] = ry;
                sum[ry] += sum[rx];
            }
    
            public boolean has(int x) {
                return root[x] != -1 || sum[x] != 0;
            }
        }
    
        public long[] maximumSegmentSum(int[] nums, int[] removeQueries) {
            int n = removeQueries.length;
            long[] ret = new long[n];
            long max = 0L;
            UF uf = new UF(n);
            for (int i = n - 1; i >= 0; i--) {
                int u = removeQueries[i];
                uf.insert(u, nums[u]);
                for (int v = u - 1; v <= u + 1; v += 2) {
                    if (v >= 0 && v < n && uf.has(v)) {
                        uf.union(v, u);
                    }
                }
                ret[i] = max;
                int ru = uf.find(u);
                max = Math.max(max, uf.sum[ru]);
            }
            return ret;
        }
    }
    
    ############
    
    class Solution {
        private int[] p;
        private long[] s;
    
        public long[] maximumSegmentSum(int[] nums, int[] removeQueries) {
            int n = nums.length;
            p = new int[n];
            s = new long[n];
            for (int i = 0; i < n; ++i) {
                p[i] = i;
            }
            long[] ans = new long[n];
            long mx = 0;
            for (int j = n - 1; j > 0; --j) {
                int i = removeQueries[j];
                s[i] = nums[i];
                if (i > 0 && s[find(i - 1)] > 0) {
                    merge(i, i - 1);
                }
                if (i < n - 1 && s[find(i + 1)] > 0) {
                    merge(i, i + 1);
                }
                mx = Math.max(mx, s[find(i)]);
                ans[j - 1] = mx;
            }
            return ans;
        }
    
        private int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    
        private void merge(int a, int b) {
            int pa = find(a), pb = find(b);
            p[pa] = pb;
            s[pb] += s[pa];
        }
    }
    
  • class Solution:
        def maximumSegmentSum(self, nums: List[int], removeQueries: List[int]) -> List[int]:
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])
                return p[x]
    
            def merge(a, b):
                pa, pb = find(a), find(b)
                p[pa] = pb
                s[pb] += s[pa]
    
            n = len(nums)
            p = list(range(n))
            s = [0] * n
            ans = [0] * n
            mx = 0
            for j in range(n - 1, 0, -1):
                i = removeQueries[j]
                s[i] = nums[i]
                if i and s[find(i - 1)]:
                    merge(i, i - 1)
                if i < n - 1 and s[find(i + 1)]:
                    merge(i, i + 1)
                mx = max(mx, s[find(i)])
                ans[j - 1] = mx
            return ans
    
    ############
    
    # 2382. Maximum Segment Sum After Removals
    # https://leetcode.com/problems/maximum-segment-sum-after-removals/
    
    class UnionFind:
        def __init__(self):
            self._parent = {}
            self.segmentSum = {}
            self.maxSegmentSum = 0
        
        def merge(self, u, value):
            self._parent[u] = u
            self.segmentSum[u] = value
            self.maxSegmentSum = max(self.maxSegmentSum, value)
            
            if u - 1 in self._parent:
                self.union(u, u - 1)
            
            if u + 1 in self._parent:
                self.union(u, u + 1)
        
        def union(self, a, b):
            a, b = self.find(a), self.find(b)
            if a == b:
                return
    
            self.segmentSum[a] += self.segmentSum[b]
            self._parent[b] = a
            self.maxSegmentSum = max(self.maxSegmentSum, self.segmentSum[a])
    
        def find(self, x):
            if x != self._parent[x]:
                self._parent[x] = self.find(self._parent[x])
    
            return self._parent[x]
    
    class Solution:
        def maximumSegmentSum(self, nums: List[int], removeQueries: List[int]) -> List[int]:
            n = len(nums)
            uf = UnionFind()
            res = [0] * n
            
            for i in range(n - 1, -1, -1):
                res[i] = uf.maxSegmentSum
                u = removeQueries[i]
                uf.merge(u, nums[u])
            
            return res
            
    
    
  • using ll = long long;
    
    class Solution {
    public:
        vector<int> p;
        vector<ll> s;
    
        vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
            int n = nums.size();
            p.resize(n);
            for (int i = 0; i < n; ++i) p[i] = i;
            s.assign(n, 0);
            vector<ll> ans(n);
            ll mx = 0;
            for (int j = n - 1; j; --j) {
                int i = removeQueries[j];
                s[i] = nums[i];
                if (i && s[find(i - 1)]) merge(i, i - 1);
                if (i < n - 1 && s[find(i + 1)]) merge(i, i + 1);
                mx = max(mx, s[find(i)]);
                ans[j - 1] = mx;
            }
            return ans;
        }
    
        int find(int x) {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }
    
        void merge(int a, int b) {
            int pa = find(a), pb = find(b);
            p[pa] = pb;
            s[pb] += s[pa];
        }
    };
    
  • func maximumSegmentSum(nums []int, removeQueries []int) []int64 {
    	n := len(nums)
    	p := make([]int, n)
    	s := make([]int, n)
    	for i := range p {
    		p[i] = i
    	}
    	var find func(x int) int
    	find = func(x int) int {
    		if p[x] != x {
    			p[x] = find(p[x])
    		}
    		return p[x]
    	}
    	merge := func(a, b int) {
    		pa, pb := find(a), find(b)
    		p[pa] = pb
    		s[pb] += s[pa]
    	}
    	mx := 0
    	ans := make([]int64, n)
    	for j := n - 1; j > 0; j-- {
    		i := removeQueries[j]
    		s[i] = nums[i]
    		if i > 0 && s[find(i-1)] > 0 {
    			merge(i, i-1)
    		}
    		if i < n-1 && s[find(i+1)] > 0 {
    			merge(i, i+1)
    		}
    		mx = max(mx, s[find(i)])
    		ans[j-1] = int64(mx)
    	}
    	return ans
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions