Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2382.html
2382. Maximum Segment Sum After Removals
- Difficulty: Hard.
- Related Topics: Array, Union Find, Prefix Sum, Ordered Set.
- Similar Questions: .
Problem
You are given two 0-indexed integer arrays nums
and removeQueries
, both of length n
. For the ith
query, the element in nums
at the index removeQueries[i]
is removed, splitting nums
into different segments.
A segment is a contiguous sequence of positive integers in nums
. A segment sum is the sum of every element in a segment.
Return** an integer array answer
, of length n
, where answer[i]
is the maximum segment sum after applying the ith
**removal.
Note: The same index will not be removed more than once.
Example 1:
Input: nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1]
Output: [14,7,2,2,0]
Explanation: Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 0th element, nums becomes [0,2,5,6,1] and the maximum segment sum is 14 for segment [2,5,6,1].
Query 2: Remove the 3rd element, nums becomes [0,2,5,0,1] and the maximum segment sum is 7 for segment [2,5].
Query 3: Remove the 2nd element, nums becomes [0,2,0,0,1] and the maximum segment sum is 2 for segment [2].
Query 4: Remove the 4th element, nums becomes [0,2,0,0,0] and the maximum segment sum is 2 for segment [2].
Query 5: Remove the 1st element, nums becomes [0,0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [14,7,2,2,0].
Example 2:
Input: nums = [3,2,11,1], removeQueries = [3,2,1,0]
Output: [16,5,3,0]
Explanation: Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 3rd element, nums becomes [3,2,11,0] and the maximum segment sum is 16 for segment [3,2,11].
Query 2: Remove the 2nd element, nums becomes [3,2,0,0] and the maximum segment sum is 5 for segment [3,2].
Query 3: Remove the 1st element, nums becomes [3,0,0,0] and the maximum segment sum is 3 for segment [3].
Query 4: Remove the 0th element, nums becomes [0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [16,5,3,0].
Constraints:
-
n == nums.length == removeQueries.length
-
1 <= n <= 105
-
1 <= nums[i] <= 109
-
0 <= removeQueries[i] < n
-
All the values of
removeQueries
are unique.
Solution
-
class Solution { private static class UF { int[] root; long[] sum; public UF(int n) { this.root = new int[n]; Arrays.fill(this.root, -1); this.sum = new long[n]; } public void insert(int x, int value) { if (root[x] != -1 || sum[x] != 0) { return; } this.root[x] = x; this.sum[x] = value; } public int find(int x) { while (root[x] != x) { int fa = root[x]; int ga = root[fa]; root[x] = ga; x = fa; } return x; } public void union(int x, int y) { int rx = find(x); int ry = find(y); if (x == y) { return; } root[rx] = ry; sum[ry] += sum[rx]; } public boolean has(int x) { return root[x] != -1 || sum[x] != 0; } } public long[] maximumSegmentSum(int[] nums, int[] removeQueries) { int n = removeQueries.length; long[] ret = new long[n]; long max = 0L; UF uf = new UF(n); for (int i = n - 1; i >= 0; i--) { int u = removeQueries[i]; uf.insert(u, nums[u]); for (int v = u - 1; v <= u + 1; v += 2) { if (v >= 0 && v < n && uf.has(v)) { uf.union(v, u); } } ret[i] = max; int ru = uf.find(u); max = Math.max(max, uf.sum[ru]); } return ret; } } ############ class Solution { private int[] p; private long[] s; public long[] maximumSegmentSum(int[] nums, int[] removeQueries) { int n = nums.length; p = new int[n]; s = new long[n]; for (int i = 0; i < n; ++i) { p[i] = i; } long[] ans = new long[n]; long mx = 0; for (int j = n - 1; j > 0; --j) { int i = removeQueries[j]; s[i] = nums[i]; if (i > 0 && s[find(i - 1)] > 0) { merge(i, i - 1); } if (i < n - 1 && s[find(i + 1)] > 0) { merge(i, i + 1); } mx = Math.max(mx, s[find(i)]); ans[j - 1] = mx; } return ans; } private int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } private void merge(int a, int b) { int pa = find(a), pb = find(b); p[pa] = pb; s[pb] += s[pa]; } }
-
class Solution: def maximumSegmentSum(self, nums: List[int], removeQueries: List[int]) -> List[int]: def find(x): if p[x] != x: p[x] = find(p[x]) return p[x] def merge(a, b): pa, pb = find(a), find(b) p[pa] = pb s[pb] += s[pa] n = len(nums) p = list(range(n)) s = [0] * n ans = [0] * n mx = 0 for j in range(n - 1, 0, -1): i = removeQueries[j] s[i] = nums[i] if i and s[find(i - 1)]: merge(i, i - 1) if i < n - 1 and s[find(i + 1)]: merge(i, i + 1) mx = max(mx, s[find(i)]) ans[j - 1] = mx return ans ############ # 2382. Maximum Segment Sum After Removals # https://leetcode.com/problems/maximum-segment-sum-after-removals/ class UnionFind: def __init__(self): self._parent = {} self.segmentSum = {} self.maxSegmentSum = 0 def merge(self, u, value): self._parent[u] = u self.segmentSum[u] = value self.maxSegmentSum = max(self.maxSegmentSum, value) if u - 1 in self._parent: self.union(u, u - 1) if u + 1 in self._parent: self.union(u, u + 1) def union(self, a, b): a, b = self.find(a), self.find(b) if a == b: return self.segmentSum[a] += self.segmentSum[b] self._parent[b] = a self.maxSegmentSum = max(self.maxSegmentSum, self.segmentSum[a]) def find(self, x): if x != self._parent[x]: self._parent[x] = self.find(self._parent[x]) return self._parent[x] class Solution: def maximumSegmentSum(self, nums: List[int], removeQueries: List[int]) -> List[int]: n = len(nums) uf = UnionFind() res = [0] * n for i in range(n - 1, -1, -1): res[i] = uf.maxSegmentSum u = removeQueries[i] uf.merge(u, nums[u]) return res
-
using ll = long long; class Solution { public: vector<int> p; vector<ll> s; vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) { int n = nums.size(); p.resize(n); for (int i = 0; i < n; ++i) p[i] = i; s.assign(n, 0); vector<ll> ans(n); ll mx = 0; for (int j = n - 1; j; --j) { int i = removeQueries[j]; s[i] = nums[i]; if (i && s[find(i - 1)]) merge(i, i - 1); if (i < n - 1 && s[find(i + 1)]) merge(i, i + 1); mx = max(mx, s[find(i)]); ans[j - 1] = mx; } return ans; } int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } void merge(int a, int b) { int pa = find(a), pb = find(b); p[pa] = pb; s[pb] += s[pa]; } };
-
func maximumSegmentSum(nums []int, removeQueries []int) []int64 { n := len(nums) p := make([]int, n) s := make([]int, n) for i := range p { p[i] = i } var find func(x int) int find = func(x int) int { if p[x] != x { p[x] = find(p[x]) } return p[x] } merge := func(a, b int) { pa, pb := find(a), find(b) p[pa] = pb s[pb] += s[pa] } mx := 0 ans := make([]int64, n) for j := n - 1; j > 0; j-- { i := removeQueries[j] s[i] = nums[i] if i > 0 && s[find(i-1)] > 0 { merge(i, i-1) } if i < n-1 && s[find(i+1)] > 0 { merge(i, i+1) } mx = max(mx, s[find(i)]) ans[j-1] = int64(mx) } return ans } func max(a, b int) int { if a > b { return a } return b }
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).