Welcome to Subscribe On Youtube

2493. Divide Nodes Into the Maximum Number of Groups

Description

You are given a positive integer n representing the number of nodes in an undirected graph. The nodes are labeled from 1 to n.

You are also given a 2D integer array edges, where edges[i] = [ai, bi] indicates that there is a bidirectional edge between nodes ai and bi. Notice that the given graph may be disconnected.

Divide the nodes of the graph into m groups (1-indexed) such that:

  • Each node in the graph belongs to exactly one group.
  • For every pair of nodes in the graph that are connected by an edge [ai, bi], if ai belongs to the group with index x, and bi belongs to the group with index y, then |y - x| = 1.

Return the maximum number of groups (i.e., maximum m) into which you can divide the nodes. Return -1 if it is impossible to group the nodes with the given conditions.

 

Example 1:

Input: n = 6, edges = [[1,2],[1,4],[1,5],[2,6],[2,3],[4,6]]
Output: 4
Explanation: As shown in the image we:
- Add node 5 to the first group.
- Add node 1 to the second group.
- Add nodes 2 and 4 to the third group.
- Add nodes 3 and 6 to the fourth group.
We can see that every edge is satisfied.
It can be shown that that if we create a fifth group and move any node from the third or fourth group to it, at least on of the edges will not be satisfied.

Example 2:

Input: n = 3, edges = [[1,2],[2,3],[3,1]]
Output: -1
Explanation: If we add node 1 to the first group, node 2 to the second group, and node 3 to the third group to satisfy the first two edges, we can see that the third edge will not be satisfied.
It can be shown that no grouping is possible.

 

Constraints:

  • 1 <= n <= 500
  • 1 <= edges.length <= 104
  • edges[i].length == 2
  • 1 <= ai, bi <= n
  • ai != bi
  • There is at most one edge between any pair of vertices.

Solutions

  • class Solution {
        private List<Integer>[] g;
        private List<Integer> arr = new ArrayList<>();
        private boolean[] vis;
        private int n;
    
        public int magnificentSets(int n, int[][] edges) {
            g = new List[n + 1];
            this.n = n;
            Arrays.setAll(g, k -> new ArrayList<>());
            for (var e : edges) {
                int a = e[0], b = e[1];
                g[a].add(b);
                g[b].add(a);
            }
    
            vis = new boolean[n + 1];
            int ans = 0;
            for (int i = 1; i <= n; ++i) {
                if (!vis[i]) {
                    dfs(i);
                    int t = -1;
                    for (int v : arr) {
                        t = Math.max(t, bfs(v));
                    }
                    if (t == -1) {
                        return -1;
                    }
                    ans += t;
                    arr.clear();
                }
            }
            return ans;
        }
    
        private int bfs(int k) {
            int[] dist = new int[n + 1];
            Arrays.fill(dist, 1 << 30);
            dist[k] = 1;
            Deque<Integer> q = new ArrayDeque<>();
            q.offer(k);
            int ans = 1;
            while (!q.isEmpty()) {
                int i = q.pollFirst();
                for (int j : g[i]) {
                    if (dist[j] == 1 << 30) {
                        dist[j] = dist[i] + 1;
                        ans = dist[j];
                        q.offer(j);
                    }
                }
            }
            for (int i : arr) {
                if (dist[i] == 1 << 30) {
                    dist[i] = ++ans;
                }
            }
            for (int i : arr) {
                for (int j : g[i]) {
                    if (Math.abs(dist[i] - dist[j]) != 1) {
                        return -1;
                    }
                }
            }
            return ans;
        }
    
        private void dfs(int i) {
            arr.add(i);
            vis[i] = true;
            for (int j : g[i]) {
                if (!vis[j]) {
                    dfs(j);
                }
            }
        }
    }
    
  • class Solution {
    public:
        int magnificentSets(int n, vector<vector<int>>& edges) {
            vector<vector<int>> g(n + 1);
            for (auto& e : edges) {
                int a = e[0], b = e[1];
                g[a].emplace_back(b);
                g[b].emplace_back(a);
            }
            vector<int> arr;
            bool vis[n + 1];
            memset(vis, 0, sizeof vis);
            int ans = 0;
            function<void(int)> dfs = [&](int i) {
                arr.emplace_back(i);
                vis[i] = true;
                for (int& j : g[i]) {
                    if (!vis[j]) {
                        dfs(j);
                    }
                }
            };
            auto bfs = [&](int k) {
                int ans = 1;
                int dist[n + 1];
                memset(dist, 0x3f, sizeof dist);
                dist[k] = 1;
                queue<int> q{ {k} };
                while (!q.empty()) {
                    int i = q.front();
                    q.pop();
                    for (int& j : g[i]) {
                        if (dist[j] == 0x3f3f3f3f) {
                            ans = dist[j] = dist[i] + 1;
                            q.push(j);
                        }
                    }
                }
                for (int& i : arr) {
                    if (dist[i] == 0x3f3f3f3f) {
                        dist[i] = ++ans;
                    }
                }
                for (int& i : arr) {
                    for (int& j : g[i]) {
                        if (abs(dist[i] - dist[j]) != 1) {
                            return -1;
                        }
                    }
                }
                return ans;
            };
            for (int i = 1; i <= n; ++i) {
                if (!vis[i]) {
                    dfs(i);
                    int t = -1;
                    for (int& v : arr) t = max(t, bfs(v));
                    if (t == -1) return -1;
                    ans += t;
                    arr.clear();
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def magnificentSets(self, n: int, edges: List[List[int]]) -> int:
            def dfs(i):
                arr.append(i)
                vis[i] = True
                for j in g[i]:
                    if not vis[j]:
                        dfs(j)
    
            def bfs(i):
                ans = 1
                dist = [inf] * (n + 1)
                dist[i] = 1
                q = deque([i])
                while q:
                    i = q.popleft()
                    for j in g[i]:
                        if dist[j] == inf:
                            ans = dist[j] = dist[i] + 1
                            q.append(j)
                for i in arr:
                    if dist[i] == inf:
                        ans += 1
                        dist[i] = ans
                for i in arr:
                    for j in g[i]:
                        if abs(dist[i] - dist[j]) != 1:
                            return -1
                return ans
    
            g = defaultdict(list)
            for a, b in edges:
                g[a].append(b)
                g[b].append(a)
            vis = [False] * (n + 1)
            ans = 0
            for i in range(1, n + 1):
                if not vis[i]:
                    arr = []
                    dfs(i)
                    t = max(bfs(v) for v in arr)
                    if t == -1:
                        return -1
                    ans += t
            return ans
    
    
  • func magnificentSets(n int, edges [][]int) int {
    	g := make([][]int, n+1)
    	for _, e := range edges {
    		a, b := e[0], e[1]
    		g[a] = append(g[a], b)
    		g[b] = append(g[b], a)
    	}
    	arr := []int{}
    	vis := make([]bool, n+1)
    	ans := 0
    	var dfs func(int)
    	dfs = func(i int) {
    		arr = append(arr, i)
    		vis[i] = true
    		for _, j := range g[i] {
    			if !vis[j] {
    				dfs(j)
    			}
    		}
    	}
    	bfs := func(k int) int {
    		ans := 1
    		dist := make([]int, n+1)
    		for i := range dist {
    			dist[i] = 1 << 30
    		}
    		q := []int{k}
    		dist[k] = 1
    		for len(q) > 0 {
    			i := q[0]
    			q = q[1:]
    			for _, j := range g[i] {
    				if dist[j] == 1<<30 {
    					dist[j] = dist[i] + 1
    					ans = dist[j]
    					q = append(q, j)
    				}
    			}
    		}
    		for _, i := range arr {
    			if dist[i] == 1<<30 {
    				ans++
    				dist[i] = ans
    			}
    		}
    		for _, i := range arr {
    			for _, j := range g[i] {
    				if abs(dist[i]-dist[j]) != 1 {
    					return -1
    				}
    			}
    		}
    		return ans
    	}
    	for i := 1; i <= n; i++ {
    		if !vis[i] {
    			dfs(i)
    			t := -1
    			for _, v := range arr {
    				t = max(t, bfs(v))
    			}
    			if t == -1 {
    				return -1
    			}
    			ans += t
    			arr = []int{}
    		}
    	}
    	return ans
    }
    
    func abs(x int) int {
    	if x < 0 {
    		return -x
    	}
    	return x
    }
    
  • var magnificentSets = function (n, edges) {
        const graph = Array.from({ length: n + 1 }, () => new Set());
        for (const [u, v] of edges) {
            graph[u].add(v);
            graph[v].add(u);
        }
        const hash = new Map();
    
        // 2. BFS
        for (let i = 1; i <= n; i++) {
            let queue = [i];
            const dis = Array(n + 1).fill(0);
            dis[i] = 1;
            let mx = 1,
                mn = n;
            while (queue.length) {
                let next = [];
                for (let u of queue) {
                    mn = Math.min(mn, u);
                    for (const v of graph[u]) {
                        if (!dis[v]) {
                            dis[v] = dis[u] + 1;
                            mx = Math.max(mx, dis[v]);
                            next.push(v);
                        }
                        if (Math.abs(dis[u] - dis[v]) != 1) {
                            return -1;
                        }
                    }
                }
                queue = next;
            }
            hash.set(mn, Math.max(mx, hash.get(mn) || 0));
        }
    
        let ans = 0;
        for (const [u, v] of hash) {
            ans += v;
        }
        return ans;
    };
    
    

All Problems

All Solutions