Welcome to Subscribe On Youtube
2485. Find the Pivot Integer
Description
Given a positive integer n
, find the pivot integer x
such that:
- The sum of all elements between
1
andx
inclusively equals the sum of all elements betweenx
andn
inclusively.
Return the pivot integer x
. If no such integer exists, return -1
. It is guaranteed that there will be at most one pivot index for the given input.
Example 1:
Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21.
Example 2:
Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1.
Example 3:
Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.
Constraints:
1 <= n <= 1000
Solutions
Solution 1: Enumeration
We can directly enumerate $x$ in the range of $[1,..n]$, and check whether the following equation holds. If it holds, then $x$ is the pivot integer, and we can directly return $x$.
\[(1 + x) \times x = (x + n) \times (n - x + 1)\]The time complexity is $O(n)$, where $n$ is the given positive integer $n$. The space complexity is $O(1)$.
Solution 2: Mathematics
We can transform the above equation to get:
\[n \times (n + 1) = 2 \times x^2\]That is:
\[x = \sqrt{\frac{n \times (n + 1)}{2}}\]If $x$ is an integer, then $x$ is the pivot integer, otherwise there is no pivot integer.
The time complexity is $O(1)$, and the space complexity is $O(1)$.
-
class Solution { public int pivotInteger(int n) { for (int x = 1; x <= n; ++x) { if ((1 + x) * x == (x + n) * (n - x + 1)) { return x; } } return -1; } }
-
class Solution { public: int pivotInteger(int n) { for (int x = 1; x <= n; ++x) { if ((1 + x) * x == (x + n) * (n - x + 1)) { return x; } } return -1; } };
-
class Solution: def pivotInteger(self, n: int) -> int: for x in range(1, n + 1): if (1 + x) * x == (x + n) * (n - x + 1): return x return -1
-
func pivotInteger(n int) int { for x := 1; x <= n; x++ { if (1+x)*x == (x+n)*(n-x+1) { return x } } return -1 }
-
function pivotInteger(n: number): number { for (let x = 1; x <= n; ++x) { if ((1 + x) * x === (x + n) * (n - x + 1)) { return x; } } return -1; }
-
class Solution { /** * @param Integer $n * @return Integer */ function pivotInteger($n) { $sum = ($n * ($n + 1)) / 2; $pre = 0; for ($i = 1; $i <= $n; $i++) { if ($pre + $i === $sum - $pre) { return $i; } $pre += $i; } return -1; } }
-
impl Solution { pub fn pivot_integer(n: i32) -> i32 { let y = (n * (n + 1)) / 2; let x = (y as f64).sqrt() as i32; if x * x == y { return x; } -1 } }