Welcome to Subscribe On Youtube
2484. Count Palindromic Subsequences
Description
Given a string of digits s
, return the number of palindromic subsequences of s
having length 5
. Since the answer may be very large, return it modulo 109 + 7
.
Note:
- A string is palindromic if it reads the same forward and backward.
- A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.
Example 1:
Input: s = "103301" Output: 2 Explanation: There are 6 possible subsequences of length 5: "10330","10331","10301","10301","13301","03301". Two of them (both equal to "10301") are palindromic.
Example 2:
Input: s = "0000000" Output: 21 Explanation: All 21 subsequences are "00000", which is palindromic.
Example 3:
Input: s = "9999900000" Output: 2 Explanation: The only two palindromic subsequences are "99999" and "00000".
Constraints:
1 <= s.length <= 104
s
consists of digits.
Solutions
-
class Solution { private static final int MOD = (int) 1e9 + 7; public int countPalindromes(String s) { int n = s.length(); int[][][] pre = new int[n + 2][10][10]; int[][][] suf = new int[n + 2][10][10]; int[] t = new int[n]; for (int i = 0; i < n; ++i) { t[i] = s.charAt(i) - '0'; } int[] c = new int[10]; for (int i = 1; i <= n; ++i) { int v = t[i - 1]; for (int j = 0; j < 10; ++j) { for (int k = 0; k < 10; ++k) { pre[i][j][k] = pre[i - 1][j][k]; } } for (int j = 0; j < 10; ++j) { pre[i][j][v] += c[j]; } c[v]++; } c = new int[10]; for (int i = n; i > 0; --i) { int v = t[i - 1]; for (int j = 0; j < 10; ++j) { for (int k = 0; k < 10; ++k) { suf[i][j][k] = suf[i + 1][j][k]; } } for (int j = 0; j < 10; ++j) { suf[i][j][v] += c[j]; } c[v]++; } long ans = 0; for (int i = 1; i <= n; ++i) { for (int j = 0; j < 10; ++j) { for (int k = 0; k < 10; ++k) { ans += (long) pre[i - 1][j][k] * suf[i + 1][j][k]; ans %= MOD; } } } return (int) ans; } }
-
class Solution { public: const int mod = 1e9 + 7; int countPalindromes(string s) { int n = s.size(); int pre[n + 2][10][10]; int suf[n + 2][10][10]; memset(pre, 0, sizeof pre); memset(suf, 0, sizeof suf); int t[n]; for (int i = 0; i < n; ++i) t[i] = s[i] - '0'; int c[10] = {0}; for (int i = 1; i <= n; ++i) { int v = t[i - 1]; for (int j = 0; j < 10; ++j) { for (int k = 0; k < 10; ++k) { pre[i][j][k] = pre[i - 1][j][k]; } } for (int j = 0; j < 10; ++j) { pre[i][j][v] += c[j]; } c[v]++; } memset(c, 0, sizeof c); for (int i = n; i > 0; --i) { int v = t[i - 1]; for (int j = 0; j < 10; ++j) { for (int k = 0; k < 10; ++k) { suf[i][j][k] = suf[i + 1][j][k]; } } for (int j = 0; j < 10; ++j) { suf[i][j][v] += c[j]; } c[v]++; } long ans = 0; for (int i = 1; i <= n; ++i) { for (int j = 0; j < 10; ++j) { for (int k = 0; k < 10; ++k) { ans += 1ll * pre[i - 1][j][k] * suf[i + 1][j][k]; ans %= mod; } } } return ans; } };
-
class Solution: def countPalindromes(self, s: str) -> int: mod = 10**9 + 7 n = len(s) pre = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)] suf = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)] t = list(map(int, s)) c = [0] * 10 for i, v in enumerate(t, 1): for j in range(10): for k in range(10): pre[i][j][k] = pre[i - 1][j][k] for j in range(10): pre[i][j][v] += c[j] c[v] += 1 c = [0] * 10 for i in range(n, 0, -1): v = t[i - 1] for j in range(10): for k in range(10): suf[i][j][k] = suf[i + 1][j][k] for j in range(10): suf[i][j][v] += c[j] c[v] += 1 ans = 0 for i in range(1, n + 1): for j in range(10): for k in range(10): ans += pre[i - 1][j][k] * suf[i + 1][j][k] ans %= mod return ans
-
func countPalindromes(s string) int { n := len(s) pre := [10010][10][10]int{} suf := [10010][10][10]int{} t := make([]int, n) for i, c := range s { t[i] = int(c - '0') } c := [10]int{} for i := 1; i <= n; i++ { v := t[i-1] for j := 0; j < 10; j++ { for k := 0; k < 10; k++ { pre[i][j][k] = pre[i-1][j][k] } } for j := 0; j < 10; j++ { pre[i][j][v] += c[j] } c[v]++ } c = [10]int{} for i := n; i > 0; i-- { v := t[i-1] for j := 0; j < 10; j++ { for k := 0; k < 10; k++ { suf[i][j][k] = suf[i+1][j][k] } } for j := 0; j < 10; j++ { suf[i][j][v] += c[j] } c[v]++ } ans := 0 const mod int = 1e9 + 7 for i := 1; i <= n; i++ { for j := 0; j < 10; j++ { for k := 0; k < 10; k++ { ans += pre[i-1][j][k] * suf[i+1][j][k] ans %= mod } } } return ans }