Welcome to Subscribe On Youtube
2466. Count Ways To Build Good Strings
Description
Given the integers zero
, one
, low
, and high
, we can construct a string by starting with an empty string, and then at each step perform either of the following:
- Append the character
'0'
zero
times. - Append the character
'1'
one
times.
This can be performed any number of times.
A good string is a string constructed by the above process having a length between low
and high
(inclusive).
Return the number of different good strings that can be constructed satisfying these properties. Since the answer can be large, return it modulo 109 + 7
.
Example 1:
Input: low = 3, high = 3, zero = 1, one = 1 Output: 8 Explanation: One possible valid good string is "011". It can be constructed as follows: "" -> "0" -> "01" -> "011". All binary strings from "000" to "111" are good strings in this example.
Example 2:
Input: low = 2, high = 3, zero = 1, one = 2 Output: 5 Explanation: The good strings are "00", "11", "000", "110", and "011".
Constraints:
1 <= low <= high <= 105
1 <= zero, one <= low
Solutions
Solution 1: Memoization Search
We design a function $dfs(i)$ to represent the number of good strings constructed starting from the $i$-th position. The answer is $dfs(0)$.
The computation process of the function $dfs(i)$ is as follows:
- If $i > high$, return $0$;
- If $low \leq i \leq high$, increment the answer by $1$, then after $i$, we can add either
zero
number of $0$s orone
number of $1$s. Therefore, the answer is incremented by $dfs(i + zero) + dfs(i + one)$.
During the process, we need to take the modulus of the answer, and we can use memoization search to reduce redundant computations.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n = high$.
-
class Solution { private static final int MOD = (int) 1e9 + 7; private int[] f; private int lo; private int hi; private int zero; private int one; public int countGoodStrings(int low, int high, int zero, int one) { f = new int[high + 1]; Arrays.fill(f, -1); lo = low; hi = high; this.zero = zero; this.one = one; return dfs(0); } private int dfs(int i) { if (i > hi) { return 0; } if (f[i] != -1) { return f[i]; } long ans = 0; if (i >= lo && i <= hi) { ++ans; } ans += dfs(i + zero) + dfs(i + one); ans %= MOD; f[i] = (int) ans; return f[i]; } }
-
class Solution { public: const int mod = 1e9 + 7; int countGoodStrings(int low, int high, int zero, int one) { vector<int> f(high + 1, -1); function<int(int)> dfs = [&](int i) -> int { if (i > high) return 0; if (f[i] != -1) return f[i]; long ans = i >= low && i <= high; ans += dfs(i + zero) + dfs(i + one); ans %= mod; f[i] = ans; return ans; }; return dfs(0); } };
-
class Solution: def countGoodStrings(self, low: int, high: int, zero: int, one: int) -> int: @cache def dfs(i): if i > high: return 0 ans = 0 if low <= i <= high: ans += 1 ans += dfs(i + zero) + dfs(i + one) return ans % mod mod = 10**9 + 7 return dfs(0)
-
func countGoodStrings(low int, high int, zero int, one int) int { f := make([]int, high+1) for i := range f { f[i] = -1 } const mod int = 1e9 + 7 var dfs func(i int) int dfs = func(i int) int { if i > high { return 0 } if f[i] != -1 { return f[i] } ans := 0 if i >= low && i <= high { ans++ } ans += dfs(i+zero) + dfs(i+one) ans %= mod f[i] = ans return ans } return dfs(0) }