Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2344.html

2344. Minimum Deletions to Make Array Divisible

  • Difficulty: Hard.
  • Related Topics: Array, Math, Sorting, Heap (Priority Queue), Number Theory.
  • Similar Questions: Check If Array Pairs Are Divisible by k.

Problem

You are given two positive integer arrays nums and numsDivide. You can delete any number of elements from nums.

Return the **minimum number of deletions such that the smallest element in nums divides all the elements of **numsDivide. If this is not possible, return -1.

Note that an integer x divides y if y % x == 0.

  Example 1:

Input: nums = [2,3,2,4,3], numsDivide = [9,6,9,3,15]
Output: 2
Explanation: 
The smallest element in [2,3,2,4,3] is 2, which does not divide all the elements of numsDivide.
We use 2 deletions to delete the elements in nums that are equal to 2 which makes nums = [3,4,3].
The smallest element in [3,4,3] is 3, which divides all the elements of numsDivide.
It can be shown that 2 is the minimum number of deletions needed.

Example 2:

Input: nums = [4,3,6], numsDivide = [8,2,6,10]
Output: -1
Explanation: 
We want the smallest element in nums to divide all the elements of numsDivide.
There is no way to delete elements from nums to allow this.

  Constraints:

  • 1 <= nums.length, numsDivide.length <= 105

  • 1 <= nums[i], numsDivide[i] <= 109

Solution

  • class Solution {
        public int minOperations(int[] nums, int[] numsDivide) {
            int g = numsDivide[0];
            for (int i : numsDivide) {
                g = gcd(g, i);
            }
            int minOp = 0;
            int smallest = Integer.MAX_VALUE;
            for (int num : nums) {
                if (g % num == 0) {
                    smallest = Math.min(smallest, num);
                }
            }
            for (int num : nums) {
                if (num < smallest) {
                    ++minOp;
                }
            }
            return smallest == Integer.MAX_VALUE ? -1 : minOp;
        }
    
        private int gcd(int a, int b) {
            while (b > 0) {
                int tmp = a;
                a = b;
                b = tmp % b;
            }
            return a;
        }
    }
    
    ############
    
    class Solution {
        public int minOperations(int[] nums, int[] numsDivide) {
            int x = 0;
            for (int v : numsDivide) {
                x = gcd(x, v);
            }
            int y = 1 << 30;
            for (int v : nums) {
                if (x % v == 0) {
                    y = Math.min(y, v);
                }
            }
            if (y == 1 << 30) {
                return -1;
            }
            int ans = 0;
            for (int v : nums) {
                if (v < y) {
                    ++ans;
                }
            }
            return ans;
        }
    
        private int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    }
    
  • class Solution:
        def minOperations(self, nums: List[int], numsDivide: List[int]) -> int:
            x = gcd(*numsDivide)
            y = min((v for v in nums if x % v == 0), default=0)
            return sum(v < y for v in nums) if y else -1
    
    ############
    
    # 2344. Minimum Deletions to Make Array Divisible
    # https://leetcode.com/problems/minimum-deletions-to-make-array-divisible/
    
    class Solution:
        def minOperations(self, nums: List[int], numsDivide: List[int]) -> int:
            nums.sort()
            
            d = numsDivide[0]
            
            for x in numsDivide:
                d = gcd(d, x)
                
            for i, x in enumerate(nums):
                if d % x == 0:
                    return i
            
            return -1
    
    
  • class Solution {
    public:
        int minOperations(vector<int>& nums, vector<int>& numsDivide) {
            int x = 0;
            for (int& v : numsDivide) {
                x = gcd(x, v);
            }
            int y = 1 << 30;
            for (int& v : nums) {
                if (x % v == 0) {
                    y = min(y, v);
                }
            }
            if (y == 1 << 30) {
                return -1;
            }
            int ans = 0;
            for (int& v : nums) {
                ans += v < y;
            }
            return ans;
        }
    };
    
  • func minOperations(nums []int, numsDivide []int) int {
    	x := 0
    	for _, v := range numsDivide {
    		x = gcd(x, v)
    	}
    	y := 1 << 30
    	for _, v := range nums {
    		if x%v == 0 {
    			y = min(y, v)
    		}
    	}
    	if y == 1<<30 {
    		return -1
    	}
    	ans := 0
    	for _, v := range nums {
    		if v < y {
    			ans++
    		}
    	}
    	return ans
    }
    
    func min(a, b int) int {
    	if a < b {
    		return a
    	}
    	return b
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions