Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2342.html

2342. Max Sum of a Pair With Equal Sum of Digits

  • Difficulty: Medium.
  • Related Topics: Array, Hash Table, Sorting, Heap (Priority Queue).
  • Similar Questions: .

Problem

You are given a 0-indexed array nums consisting of positive integers. You can choose two indices i and j, such that i != j, and the sum of digits of the number nums[i] is equal to that of nums[j].

Return the **maximum value of nums[i] + nums[j] that you can obtain over all possible indices i and j that satisfy the conditions.**

  Example 1:

Input: nums = [18,43,36,13,7]
Output: 54
Explanation: The pairs (i, j) that satisfy the conditions are:
- (0, 2), both numbers have a sum of digits equal to 9, and their sum is 18 + 36 = 54.
- (1, 4), both numbers have a sum of digits equal to 7, and their sum is 43 + 7 = 50.
So the maximum sum that we can obtain is 54.

Example 2:

Input: nums = [10,12,19,14]
Output: -1
Explanation: There are no two numbers that satisfy the conditions, so we return -1.

  Constraints:

  • 1 <= nums.length <= 105

  • 1 <= nums[i] <= 109

Solution (Java, C++, Python)

  • class Solution {
        public int maximumSum(int[] nums) {
            Map<Integer, Integer> map = new HashMap<>();
            int res = -1;
            for (int num : nums) {
                int s = 0;
                for (char digit : String.valueOf(num).toCharArray()) {
                    s += Integer.valueOf(digit - '0');
                }
                if (!map.containsKey(s)) {
                    map.put(s, num);
                } else {
                    res = Math.max(res, map.get(s) + num);
                    map.put(s, Math.max(map.get(s), num));
                }
            }
            return res;
        }
    }
    
    ############
    
    class Solution {
        public int maximumSum(int[] nums) {
            int ans = -1;
            int[] d = new int[100];
            for (int v : nums) {
                int y = 0;
                for (int x = v; x > 0; x /= 10) {
                    y += x % 10;
                }
                if (d[y] > 0) {
                    ans = Math.max(ans, d[y] + v);
                }
                d[y] = Math.max(d[y], v);
            }
            return ans;
        }
    }
    
  • class Solution:
        def maximumSum(self, nums: List[int]) -> int:
            ans = -1
            d = defaultdict(int)
            for v in nums:
                x, y = v, 0
                while x:
                    y += x % 10
                    x //= 10
                if y in d:
                    ans = max(ans, d[y] + v)
                d[y] = max(d[y], v)
            return ans
    
    ############
    
    # 2342. Max Sum of a Pair With Equal Sum of Digits
    # https://leetcode.com/problems/max-sum-of-a-pair-with-equal-sum-of-digits/
    
    class Solution:
        def maximumSum(self, nums: List[int]) -> int:
            n = len(nums)
            cnt = defaultdict(list)
            
            for x in nums:
                cnt[sum(int(k) for k in str(x))].append(x)
            
            res = -1
            
            for values in cnt.values():
                if len(values) >= 2:
                    values.sort()
                    res = max(res, values[-1] + values[-2])
                
            
            return res
    
    
  • class Solution {
    public:
        int maximumSum(vector<int>& nums) {
            vector<vector<int>> d(100);
            for (int& v : nums) {
                int y = 0;
                for (int x = v; x > 0; x /= 10) {
                    y += x % 10;
                }
                d[y].emplace_back(v);
            }
            int ans = -1;
            for (auto& vs : d) {
                if (vs.size() > 1) {
                    sort(vs.rbegin(), vs.rend());
                    ans = max(ans, vs[0] + vs[1]);
                }
            }
            return ans;
        }
    };
    
  • func maximumSum(nums []int) int {
    	ans := -1
    	d := [100]int{}
    	for _, v := range nums {
    		y := 0
    		for x := v; x > 0; x /= 10 {
    			y += x % 10
    		}
    		if d[y] > 0 {
    			ans = max(ans, d[y]+v)
    		}
    		d[y] = max(d[y], v)
    	}
    	return ans
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    
  • function maximumSum(nums: number[]): number {
        const d: number[] = Array(100).fill(0);
        let ans = -1;
        for (const v of nums) {
            let x = 0;
            for (let y = v; y; y = (y / 10) | 0) {
                x += y % 10;
            }
            if (d[x]) {
                ans = Math.max(ans, d[x] + v);
            }
            d[x] = Math.max(d[x], v);
        }
        return ans;
    }
    
    
  • impl Solution {
        pub fn maximum_sum(nums: Vec<i32>) -> i32 {
            let mut d = vec![0; 100];
            let mut ans = -1;
    
            for &v in nums.iter() {
                let mut x: usize = 0;
                let mut y = v;
                while y > 0 {
                    x += (y % 10) as usize;
                    y /= 10;
                }
                if d[x] > 0 {
                    ans = ans.max(d[x] + v);
                }
                d[x] = d[x].max(v);
            }
    
            ans
        }
    }
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions