Welcome to Subscribe On Youtube
2449. Minimum Number of Operations to Make Arrays Similar
Description
You are given two positive integer arrays nums
and target
, of the same length.
In one operation, you can choose any two distinct indices i
and j
where 0 <= i, j < nums.length
and:
- set
nums[i] = nums[i] + 2
and - set
nums[j] = nums[j] - 2
.
Two arrays are considered to be similar if the frequency of each element is the same.
Return the minimum number of operations required to make nums
similar to target
. The test cases are generated such that nums
can always be similar to target
.
Example 1:
Input: nums = [8,12,6], target = [2,14,10] Output: 2 Explanation: It is possible to make nums similar to target in two operations: - Choose i = 0 and j = 2, nums = [10,12,4]. - Choose i = 1 and j = 2, nums = [10,14,2]. It can be shown that 2 is the minimum number of operations needed.
Example 2:
Input: nums = [1,2,5], target = [4,1,3] Output: 1 Explanation: We can make nums similar to target in one operation: - Choose i = 1 and j = 2, nums = [1,4,3].
Example 3:
Input: nums = [1,1,1,1,1], target = [1,1,1,1,1] Output: 0 Explanation: The array nums is already similiar to target.
Constraints:
n == nums.length == target.length
1 <= n <= 105
1 <= nums[i], target[i] <= 106
- It is possible to make
nums
similar totarget
.
Solutions
Solution 1: Odd-Even Classification + Sorting
Notice that, because each operation will only increase or decrease the value of an element by $2$, the parity of the element will not change.
Therefore, we can divide the arrays $nums$ and $target$ into two groups according to their parity, denoted as $a_1$ and $a_2$, and $b_1$ and $b_2$ respectively.
Then, we just need to pair the elements in $a_1$ with the elements in $b_1$, and pair the elements in $a_2$ with the elements in $b_2$, and then perform operations. During the pairing process, we can use a greedy strategy, pairing the smaller elements in $a_i$ with the smaller elements in $b_i$ each time, which can ensure the minimum number of operations. This can be directly implemented through sorting.
Since each operation can reduce the difference of the corresponding elements by $4$, we accumulate the difference of each corresponding position, and finally divide by $4$ to get the answer.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array $nums$.
-
class Solution { public long makeSimilar(int[] nums, int[] target) { Arrays.sort(nums); Arrays.sort(target); List<Integer> a1 = new ArrayList<>(); List<Integer> a2 = new ArrayList<>(); List<Integer> b1 = new ArrayList<>(); List<Integer> b2 = new ArrayList<>(); for (int v : nums) { if (v % 2 == 0) { a1.add(v); } else { a2.add(v); } } for (int v : target) { if (v % 2 == 0) { b1.add(v); } else { b2.add(v); } } long ans = 0; for (int i = 0; i < a1.size(); ++i) { ans += Math.abs(a1.get(i) - b1.get(i)); } for (int i = 0; i < a2.size(); ++i) { ans += Math.abs(a2.get(i) - b2.get(i)); } return ans / 4; } }
-
class Solution { public: long long makeSimilar(vector<int>& nums, vector<int>& target) { sort(nums.begin(), nums.end()); sort(target.begin(), target.end()); vector<int> a1; vector<int> a2; vector<int> b1; vector<int> b2; for (int v : nums) { if (v & 1) a1.emplace_back(v); else a2.emplace_back(v); } for (int v : target) { if (v & 1) b1.emplace_back(v); else b2.emplace_back(v); } long long ans = 0; for (int i = 0; i < a1.size(); ++i) ans += abs(a1[i] - b1[i]); for (int i = 0; i < a2.size(); ++i) ans += abs(a2[i] - b2[i]); return ans / 4; } };
-
class Solution: def makeSimilar(self, nums: List[int], target: List[int]) -> int: nums.sort(key=lambda x: (x & 1, x)) target.sort(key=lambda x: (x & 1, x)) return sum(abs(a - b) for a, b in zip(nums, target)) // 4
-
func makeSimilar(nums []int, target []int) int64 { sort.Ints(nums) sort.Ints(target) a1, a2, b1, b2 := []int{}, []int{}, []int{}, []int{} for _, v := range nums { if v%2 == 0 { a1 = append(a1, v) } else { a2 = append(a2, v) } } for _, v := range target { if v%2 == 0 { b1 = append(b1, v) } else { b2 = append(b2, v) } } ans := 0 for i := 0; i < len(a1); i++ { ans += abs(a1[i] - b1[i]) } for i := 0; i < len(a2); i++ { ans += abs(a2[i] - b2[i]) } return int64(ans / 4) } func abs(x int) int { if x < 0 { return -x } return x }
-
function makeSimilar(nums: number[], target: number[]): number { nums.sort((a, b) => a - b); target.sort((a, b) => a - b); const a1: number[] = []; const a2: number[] = []; const b1: number[] = []; const b2: number[] = []; for (const v of nums) { if (v % 2 === 0) { a1.push(v); } else { a2.push(v); } } for (const v of target) { if (v % 2 === 0) { b1.push(v); } else { b2.push(v); } } let ans = 0; for (let i = 0; i < a1.length; ++i) { ans += Math.abs(a1[i] - b1[i]); } for (let i = 0; i < a2.length; ++i) { ans += Math.abs(a2[i] - b2[i]); } return ans / 4; }