Welcome to Subscribe On Youtube
2448. Minimum Cost to Make Array Equal
Description
You are given two 0-indexed arrays nums
and cost
consisting each of n
positive integers.
You can do the following operation any number of times:
- Increase or decrease any element of the array
nums
by1
.
The cost of doing one operation on the ith
element is cost[i]
.
Return the minimum total cost such that all the elements of the array nums
become equal.
Example 1:
Input: nums = [1,3,5,2], cost = [2,3,1,14]
Output: 8
Explanation: We can make all the elements equal to 2 in the following way:
- Increase the 0th element one time. The cost is 2.
- Decrease the 1st element one time. The cost is 3.
- Decrease the 2nd element three times. The cost is 1 + 1 + 1 = 3.
The total cost is 2 + 3 + 3 = 8.
It can be shown that we cannot make the array equal with a smaller cost.
Example 2:
Input: nums = [2,2,2,2,2], cost = [4,2,8,1,3] Output: 0 Explanation: All the elements are already equal, so no operations are needed.
Constraints:
n == nums.length == cost.length
1 <= n <= 105
1 <= nums[i], cost[i] <= 106
- Test cases are generated in a way that the output doesn't exceed 253-1
Solutions
Solution 1: Prefix Sum + Sorting + Enumeration
Let’s denote the elements of the array nums
as $a_1, a_2, \cdots, a_n$ and the elements of the array cost
as $b_1, b_2, \cdots, b_n$. We can assume that $a_1 \leq a_2 \leq \cdots \leq a_n$, i.e., the array nums
is sorted in ascending order.
Suppose we change all elements in the array nums
to $x$, then the total cost we need is:
where $k$ is the number of elements in $a_1, a_2, \cdots, a_n$ that are less than or equal to $x$.
We can use the prefix sum method to calculate $\sum_{i=1}^{k} b_i$ and $\sum_{i=1}^{k} a_ib_i$, as well as $\sum_{i=k+1}^{n}a_ib_i$ and $\sum_{i=k+1}^{n}b_i$.
Then we enumerate $x$, calculate the above four prefix sums, get the total cost mentioned above, and take the minimum value.
The time complexity is $O(n\times \log n)$, where $n$ is the length of the array nums
. The main time complexity comes from sorting.
Solution 2: Sorting + Median
We can also consider $b_i$ as the occurrence times of $a_i$, then the index of the median is $\frac{\sum_{i=1}^{n} b_i}{2}$. Changing all numbers to the median is definitely optimal.
The time complexity is $O(n\times \log n)$, where $n$ is the length of the array nums
. The main time complexity comes from sorting.
-
class Solution { public long minCost(int[] nums, int[] cost) { int n = nums.length; int[][] arr = new int[n][2]; for (int i = 0; i < n; ++i) { arr[i] = new int[] {nums[i], cost[i]}; } Arrays.sort(arr, (a, b) -> a[0] - b[0]); long[] f = new long[n + 1]; long[] g = new long[n + 1]; for (int i = 1; i <= n; ++i) { long a = arr[i - 1][0], b = arr[i - 1][1]; f[i] = f[i - 1] + a * b; g[i] = g[i - 1] + b; } long ans = Long.MAX_VALUE; for (int i = 1; i <= n; ++i) { long a = arr[i - 1][0]; long l = a * g[i - 1] - f[i - 1]; long r = f[n] - f[i] - a * (g[n] - g[i]); ans = Math.min(ans, l + r); } return ans; } }
-
using ll = long long; class Solution { public: long long minCost(vector<int>& nums, vector<int>& cost) { int n = nums.size(); vector<pair<int, int>> arr(n); for (int i = 0; i < n; ++i) arr[i] = {nums[i], cost[i]}; sort(arr.begin(), arr.end()); vector<ll> f(n + 1), g(n + 1); for (int i = 1; i <= n; ++i) { auto [a, b] = arr[i - 1]; f[i] = f[i - 1] + 1ll * a * b; g[i] = g[i - 1] + b; } ll ans = 1e18; for (int i = 1; i <= n; ++i) { auto [a, _] = arr[i - 1]; ll l = 1ll * a * g[i - 1] - f[i - 1]; ll r = f[n] - f[i] - 1ll * a * (g[n] - g[i]); ans = min(ans, l + r); } return ans; } };
-
class Solution: def minCost(self, nums: List[int], cost: List[int]) -> int: arr = sorted(zip(nums, cost)) n = len(arr) f = [0] * (n + 1) g = [0] * (n + 1) for i in range(1, n + 1): a, b = arr[i - 1] f[i] = f[i - 1] + a * b g[i] = g[i - 1] + b ans = inf for i in range(1, n + 1): a = arr[i - 1][0] l = a * g[i - 1] - f[i - 1] r = f[n] - f[i] - a * (g[n] - g[i]) ans = min(ans, l + r) return ans
-
func minCost(nums []int, cost []int) int64 { n := len(nums) type pair struct{ a, b int } arr := make([]pair, n) for i, a := range nums { b := cost[i] arr[i] = pair{a, b} } sort.Slice(arr, func(i, j int) bool { return arr[i].a < arr[j].a }) f := make([]int, n+1) g := make([]int, n+1) for i := 1; i <= n; i++ { a, b := arr[i-1].a, arr[i-1].b f[i] = f[i-1] + a*b g[i] = g[i-1] + b } var ans int64 = 1e18 for i := 1; i <= n; i++ { a := arr[i-1].a l := a*g[i-1] - f[i-1] r := f[n] - f[i] - a*(g[n]-g[i]) ans = min(ans, int64(l+r)) } return ans }
-
impl Solution { #[allow(dead_code)] pub fn min_cost(nums: Vec<i32>, cost: Vec<i32>) -> i64 { let mut zip_vec: Vec<_> = nums.into_iter().zip(cost.into_iter()).collect(); // Sort the zip vector based on nums zip_vec.sort_by(|lhs, rhs| { lhs.0.cmp(&rhs.0) }); let (nums, cost): (Vec<i32>, Vec<i32>) = zip_vec.into_iter().unzip(); let mut sum: i64 = 0; for &c in &cost { sum += c as i64; } let middle_cost = (sum + 1) / 2; let mut cur_sum: i64 = 0; let mut i = 0; let n = nums.len(); while i < n { if (cost[i] as i64) + cur_sum >= middle_cost { break; } cur_sum += cost[i] as i64; i += 1; } Self::compute_manhattan_dis(&nums, &cost, nums[i]) } #[allow(dead_code)] fn compute_manhattan_dis(v: &Vec<i32>, c: &Vec<i32>, e: i32) -> i64 { let mut ret = 0; let n = v.len(); for i in 0..n { if v[i] == e { continue; } ret += ((v[i] - e).abs() as i64) * (c[i] as i64); } ret } }