Welcome to Subscribe On Youtube

2447. Number of Subarrays With GCD Equal to K

Description

Given an integer array nums and an integer k, return the number of subarrays of nums where the greatest common divisor of the subarray's elements is k.

A subarray is a contiguous non-empty sequence of elements within an array.

The greatest common divisor of an array is the largest integer that evenly divides all the array elements.

 

Example 1:

Input: nums = [9,3,1,2,6,3], k = 3
Output: 4
Explanation: The subarrays of nums where 3 is the greatest common divisor of all the subarray's elements are:
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]

Example 2:

Input: nums = [4], k = 7
Output: 0
Explanation: There are no subarrays of nums where 7 is the greatest common divisor of all the subarray's elements.

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i], k <= 109

Solutions

Solution 1: Direct Enumeration

We can enumerate $nums[i]$ as the left endpoint of the subarray, and then enumerate $nums[j]$ as the right endpoint of the subarray, where $i \le j$. During the enumeration of the right endpoint, we can use a variable $g$ to maintain the greatest common divisor of the current subarray. Each time we enumerate a new right endpoint, we update the greatest common divisor $g = \gcd(g, nums[j])$. If $g=k$, then the greatest common divisor of the current subarray equals $k$, and we increase the answer by $1$.

After the enumeration ends, return the answer.

The time complexity is $O(n \times (n + \log M))$, where $n$ and $M$ are the length of the array $nums$ and the maximum value in the array $nums$, respectively.

  • class Solution {
        public int subarrayGCD(int[] nums, int k) {
            int n = nums.length;
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                int g = 0;
                for (int j = i; j < n; ++j) {
                    g = gcd(g, nums[j]);
                    if (g == k) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    
        private int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    }
    
  • class Solution {
    public:
        int subarrayGCD(vector<int>& nums, int k) {
            int n = nums.size();
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                int g = 0;
                for (int j = i; j < n; ++j) {
                    g = gcd(g, nums[j]);
                    ans += g == k;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def subarrayGCD(self, nums: List[int], k: int) -> int:
            ans = 0
            for i in range(len(nums)):
                g = 0
                for x in nums[i:]:
                    g = gcd(g, x)
                    ans += g == k
            return ans
    
    
  • func subarrayGCD(nums []int, k int) (ans int) {
    	for i := range nums {
    		g := 0
    		for _, x := range nums[i:] {
    			g = gcd(g, x)
    			if g == k {
    				ans++
    			}
    		}
    	}
    	return
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    
  • function subarrayGCD(nums: number[], k: number): number {
        let ans = 0;
        const n = nums.length;
        for (let i = 0; i < n; ++i) {
            let g = 0;
            for (let j = i; j < n; ++j) {
                g = gcd(g, nums[j]);
                if (g === k) {
                    ++ans;
                }
            }
        }
        return ans;
    }
    
    function gcd(a: number, b: number): number {
        return b === 0 ? a : gcd(b, a % b);
    }
    
    

All Problems

All Solutions