Welcome to Subscribe On Youtube
2433. Find The Original Array of Prefix Xor
Description
You are given an integer array pref
of size n
. Find and return the array arr
of size n
that satisfies:
pref[i] = arr[0] ^ arr[1] ^ ... ^ arr[i]
.
Note that ^
denotes the bitwise-xor operation.
It can be proven that the answer is unique.
Example 1:
Input: pref = [5,2,0,3,1] Output: [5,7,2,3,2] Explanation: From the array [5,7,2,3,2] we have the following: - pref[0] = 5. - pref[1] = 5 ^ 7 = 2. - pref[2] = 5 ^ 7 ^ 2 = 0. - pref[3] = 5 ^ 7 ^ 2 ^ 3 = 3. - pref[4] = 5 ^ 7 ^ 2 ^ 3 ^ 2 = 1.
Example 2:
Input: pref = [13] Output: [13] Explanation: We have pref[0] = arr[0] = 13.
Constraints:
1 <= pref.length <= 105
0 <= pref[i] <= 106
Solutions
Solution 1: Bit Manipulation
According to the problem statement, we have equation one:
\[pref[i]=arr[0] \oplus arr[1] \oplus \cdots \oplus arr[i]\]So, we also have equation two:
\[pref[i-1]=arr[0] \oplus arr[1] \oplus \cdots \oplus arr[i-1]\]We perform a bitwise XOR operation on equations one and two, and get:
\[pref[i] \oplus pref[i-1]=arr[i]\]That is, each item in the answer array is obtained by performing a bitwise XOR operation on the adjacent two items in the prefix XOR array.
The time complexity is $O(n)$, where $n$ is the length of the prefix XOR array. Ignoring the space consumption of the answer, the space complexity is $O(1)$.
-
class Solution { public int[] findArray(int[] pref) { int n = pref.length; int[] ans = new int[n]; ans[0] = pref[0]; for (int i = 1; i < n; ++i) { ans[i] = pref[i - 1] ^ pref[i]; } return ans; } }
-
class Solution { public: vector<int> findArray(vector<int>& pref) { int n = pref.size(); vector<int> ans = {pref[0]}; for (int i = 1; i < n; ++i) { ans.push_back(pref[i - 1] ^ pref[i]); } return ans; } };
-
class Solution: def findArray(self, pref: List[int]) -> List[int]: return [a ^ b for a, b in pairwise([0] + pref)]
-
func findArray(pref []int) []int { n := len(pref) ans := []int{pref[0]} for i := 1; i < n; i++ { ans = append(ans, pref[i-1]^pref[i]) } return ans }
-
function findArray(pref: number[]): number[] { let ans = pref.slice(); for (let i = 1; i < pref.length; i++) { ans[i] = pref[i - 1] ^ pref[i]; } return ans; }
-
impl Solution { pub fn find_array(pref: Vec<i32>) -> Vec<i32> { let n = pref.len(); let mut res = vec![0; n]; res[0] = pref[0]; for i in 1..n { res[i] = pref[i] ^ pref[i - 1]; } res } }