Welcome to Subscribe On Youtube
2430. Maximum Deletions on a String
Description
You are given a string s
consisting of only lowercase English letters. In one operation, you can:
- Delete the entire string
s
, or - Delete the first
i
letters ofs
if the firsti
letters ofs
are equal to the followingi
letters ins
, for anyi
in the range1 <= i <= s.length / 2
.
For example, if s = "ababc"
, then in one operation, you could delete the first two letters of s
to get "abc"
, since the first two letters of s
and the following two letters of s
are both equal to "ab"
.
Return the maximum number of operations needed to delete all of s
.
Example 1:
Input: s = "abcabcdabc" Output: 2 Explanation: - Delete the first 3 letters ("abc") since the next 3 letters are equal. Now, s = "abcdabc". - Delete all the letters. We used 2 operations so return 2. It can be proven that 2 is the maximum number of operations needed. Note that in the second operation we cannot delete "abc" again because the next occurrence of "abc" does not happen in the next 3 letters.
Example 2:
Input: s = "aaabaab" Output: 4 Explanation: - Delete the first letter ("a") since the next letter is equal. Now, s = "aabaab". - Delete the first 3 letters ("aab") since the next 3 letters are equal. Now, s = "aab". - Delete the first letter ("a") since the next letter is equal. Now, s = "ab". - Delete all the letters. We used 4 operations so return 4. It can be proven that 4 is the maximum number of operations needed.
Example 3:
Input: s = "aaaaa" Output: 5 Explanation: In each operation, we can delete the first letter of s.
Constraints:
1 <= s.length <= 4000
s
consists only of lowercase English letters.
Solutions
Solution 1: Memoization Search
We design a function $dfs(i)$, which represents the maximum number of operations needed to delete all characters from $s[i..]$. The answer is $dfs(0)$.
The calculation process of the function $dfs(i)$ is as follows:
- If $i \geq n$, then $dfs(i) = 0$, return directly.
- Otherwise, we enumerate the length of the string $j$, where $1 \leq j \leq (n-1)/2$. If $s[i..i+j] = s[i+j..i+j+j]$, we can delete $s[i..i+j]$, then $dfs(i)=max(dfs(i), dfs(i+j)+1)$. We need to enumerate all $j$ to find the maximum value of $dfs(i)$.
Here we need to quickly determine whether $s[i..i+j]$ is equal to $s[i+j..i+j+j]$. We can preprocess all the longest common prefixes of string $s$, that is, $g[i][j]$ represents the length of the longest common prefix of $s[i..]$ and $s[j..]$. In this way, we can quickly determine whether $s[i..i+j]$ is equal to $s[i+j..i+j+j]$, that is, $g[i][i+j] \geq j$.
To avoid repeated calculations, we can use memoization search and use an array $f$ to record the value of the function $dfs(i)$.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the string $s$.
Solution 2: Dynamic Programming
We can change the memoization search in Solution 1 to dynamic programming. Define $f[i]$ to represent the maximum number of operations needed to delete all characters from $s[i..]$. Initially, $f[i]=1$, and the answer is $f[0]$.
We can enumerate $i$ from back to front. For each $i$, we enumerate the length of the string $j$, where $1 \leq j \leq (n-1)/2$. If $s[i..i+j] = s[i+j..i+j+j]$, we can delete $s[i..i+j]$, then $f[i]=max(f[i], f[i+j]+1)$. We need to enumerate all $j$ to find the maximum value of $f[i]$.
The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the string $s$.
-
class Solution { private int n; private Integer[] f; private int[][] g; public int deleteString(String s) { n = s.length(); f = new Integer[n]; g = new int[n + 1][n + 1]; for (int i = n - 1; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (s.charAt(i) == s.charAt(j)) { g[i][j] = g[i + 1][j + 1] + 1; } } } return dfs(0); } private int dfs(int i) { if (i == n) { return 0; } if (f[i] != null) { return f[i]; } f[i] = 1; for (int j = 1; j <= (n - i) / 2; ++j) { if (g[i][i + j] >= j) { f[i] = Math.max(f[i], 1 + dfs(i + j)); } } return f[i]; } }
-
class Solution { public: int deleteString(string s) { int n = s.size(); int g[n + 1][n + 1]; memset(g, 0, sizeof(g)); for (int i = n - 1; ~i; --i) { for (int j = i + 1; j < n; ++j) { if (s[i] == s[j]) { g[i][j] = g[i + 1][j + 1] + 1; } } } int f[n]; memset(f, 0, sizeof(f)); function<int(int)> dfs = [&](int i) -> int { if (i == n) { return 0; } if (f[i]) { return f[i]; } f[i] = 1; for (int j = 1; j <= (n - i) / 2; ++j) { if (g[i][i + j] >= j) { f[i] = max(f[i], 1 + dfs(i + j)); } } return f[i]; }; return dfs(0); } };
-
class Solution: def deleteString(self, s: str) -> int: @cache def dfs(i: int) -> int: if i == n: return 0 ans = 1 for j in range(1, (n - i) // 2 + 1): if s[i : i + j] == s[i + j : i + j + j]: ans = max(ans, 1 + dfs(i + j)) return ans n = len(s) return dfs(0)
-
func deleteString(s string) int { n := len(s) g := make([][]int, n+1) for i := range g { g[i] = make([]int, n+1) } for i := n - 1; i >= 0; i-- { for j := i + 1; j < n; j++ { if s[i] == s[j] { g[i][j] = g[i+1][j+1] + 1 } } } f := make([]int, n) var dfs func(int) int dfs = func(i int) int { if i == n { return 0 } if f[i] > 0 { return f[i] } f[i] = 1 for j := 1; j <= (n-i)/2; j++ { if g[i][i+j] >= j { f[i] = max(f[i], dfs(i+j)+1) } } return f[i] } return dfs(0) }
-
function deleteString(s: string): number { const n = s.length; const f: number[] = new Array(n).fill(0); const dfs = (i: number): number => { if (i == n) { return 0; } if (f[i] > 0) { return f[i]; } f[i] = 1; for (let j = 1; j <= (n - i) >> 1; ++j) { if (s.slice(i, i + j) == s.slice(i + j, i + j + j)) { f[i] = Math.max(f[i], dfs(i + j) + 1); } } return f[i]; }; return dfs(0); }