Welcome to Subscribe On Youtube

2415. Reverse Odd Levels of Binary Tree

Description

Given the root of a perfect binary tree, reverse the node values at each odd level of the tree.

  • For example, suppose the node values at level 3 are [2,1,3,4,7,11,29,18], then it should become [18,29,11,7,4,3,1,2].

Return the root of the reversed tree.

A binary tree is perfect if all parent nodes have two children and all leaves are on the same level.

The level of a node is the number of edges along the path between it and the root node.

 

Example 1:

Input: root = [2,3,5,8,13,21,34]
Output: [2,5,3,8,13,21,34]
Explanation: 
The tree has only one odd level.
The nodes at level 1 are 3, 5 respectively, which are reversed and become 5, 3.

Example 2:

Input: root = [7,13,11]
Output: [7,11,13]
Explanation: 
The nodes at level 1 are 13, 11, which are reversed and become 11, 13.

Example 3:

Input: root = [0,1,2,0,0,0,0,1,1,1,1,2,2,2,2]
Output: [0,2,1,0,0,0,0,2,2,2,2,1,1,1,1]
Explanation: 
The odd levels have non-zero values.
The nodes at level 1 were 1, 2, and are 2, 1 after the reversal.
The nodes at level 3 were 1, 1, 1, 1, 2, 2, 2, 2, and are 2, 2, 2, 2, 1, 1, 1, 1 after the reversal.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 214].
  • 0 <= Node.val <= 105
  • root is a perfect binary tree.

Solutions

Solution 1: BFS

We can use the Breadth-First Search (BFS) method, using a queue $q$ to store the nodes of each level, and a variable $i$ to record the current level. If $i$ is odd, we reverse the values of the nodes at the current level.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public TreeNode reverseOddLevels(TreeNode root) {
            Deque<TreeNode> q = new ArrayDeque<>();
            q.offer(root);
            for (int i = 0; !q.isEmpty(); ++i) {
                List<TreeNode> t = new ArrayList<>();
                for (int k = q.size(); k > 0; --k) {
                    var node = q.poll();
                    if (i % 2 == 1) {
                        t.add(node);
                    }
                    if (node.left != null) {
                        q.offer(node.left);
                        q.offer(node.right);
                    }
                }
                for (int l = 0, r = t.size() - 1; l < r; ++l, --r) {
                    var x = t.get(l).val;
                    t.get(l).val = t.get(r).val;
                    t.get(r).val = x;
                }
            }
            return root;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        TreeNode* reverseOddLevels(TreeNode* root) {
            queue<TreeNode*> q{ {root} };
            for (int i = 0; q.size(); ++i) {
                vector<TreeNode*> t;
                for (int k = q.size(); k; --k) {
                    TreeNode* node = q.front();
                    q.pop();
                    if (i & 1) {
                        t.push_back(node);
                    }
                    if (node->left) {
                        q.push(node->left);
                        q.push(node->right);
                    }
                }
                for (int l = 0, r = t.size() - 1; l < r; ++l, --r) {
                    swap(t[l]->val, t[r]->val);
                }
            }
            return root;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def reverseOddLevels(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
            q = deque([root])
            i = 0
            while q:
                if i & 1:
                    l, r = 0, len(q) - 1
                    while l < r:
                        q[l].val, q[r].val = q[r].val, q[l].val
                        l, r = l + 1, r - 1
                for _ in range(len(q)):
                    node = q.popleft()
                    if node.left:
                        q.append(node.left)
                        q.append(node.right)
                i += 1
            return root
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func reverseOddLevels(root *TreeNode) *TreeNode {
    	q := []*TreeNode{root}
    	for i := 0; len(q) > 0; i++ {
    		t := []*TreeNode{}
    		for k := len(q); k > 0; k-- {
    			node := q[0]
    			q = q[1:]
    			if i%2 == 1 {
    				t = append(t, node)
    			}
    			if node.Left != nil {
    				q = append(q, node.Left)
    				q = append(q, node.Right)
    			}
    		}
    		for l, r := 0, len(t)-1; l < r; l, r = l+1, r-1 {
    			t[l].Val, t[r].Val = t[r].Val, t[l].Val
    		}
    	}
    	return root
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function reverseOddLevels(root: TreeNode | null): TreeNode | null {
        const q: TreeNode[] = [root];
        for (let i = 0; q.length > 0; ++i) {
            if (i % 2) {
                for (let l = 0, r = q.length - 1; l < r; ++l, --r) {
                    [q[l].val, q[r].val] = [q[r].val, q[l].val];
                }
            }
            const nq: TreeNode[] = [];
            for (const { left, right } of q) {
                if (left) {
                    nq.push(left);
                    nq.push(right);
                }
            }
            q.splice(0, q.length, ...nq);
        }
        return root;
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    use std::collections::VecDeque;
    impl Solution {
        fn create_tree(vals: &Vec<Vec<i32>>, i: usize, j: usize) -> Option<Rc<RefCell<TreeNode>>> {
            if i == vals.len() {
                return None;
            }
            Some(
                Rc::new(
                    RefCell::new(TreeNode {
                        val: vals[i][j],
                        left: Self::create_tree(vals, i + 1, j * 2),
                        right: Self::create_tree(vals, i + 1, j * 2 + 1),
                    })
                )
            )
        }
    
        pub fn reverse_odd_levels(
            root: Option<Rc<RefCell<TreeNode>>>
        ) -> Option<Rc<RefCell<TreeNode>>> {
            let mut queue = VecDeque::new();
            queue.push_back(root);
            let mut d = 0;
            let mut vals = Vec::new();
            while !queue.is_empty() {
                let mut val = Vec::new();
                for _ in 0..queue.len() {
                    let mut node = queue.pop_front().unwrap();
                    let mut node = node.as_mut().unwrap().borrow_mut();
                    val.push(node.val);
                    if node.left.is_some() {
                        queue.push_back(node.left.take());
                    }
                    if node.right.is_some() {
                        queue.push_back(node.right.take());
                    }
                }
                if d % 2 == 1 {
                    val.reverse();
                }
                vals.push(val);
                d += 1;
            }
            Self::create_tree(&vals, 0, 0)
        }
    }
    
    

All Problems

All Solutions