Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2276.html

2276. Count Integers in Intervals

  • Difficulty: Hard.
  • Related Topics: Design, Segment Tree, Ordered Set.
  • Similar Questions: Merge Intervals, Insert Interval, Data Stream as Disjoint Intervals, My Calendar III.

Problem

Given an empty set of intervals, implement a data structure that can:

  • Add an interval to the set of intervals.

  • Count the number of integers that are present in at least one interval.

Implement the CountIntervals class:

  • CountIntervals() Initializes the object with an empty set of intervals.

  • void add(int left, int right) Adds the interval [left, right] to the set of intervals.

  • int count() Returns the number of integers that are present in at least one interval.

Note that an interval [left, right] denotes all the integers x where left <= x <= right.

  Example 1:

Input
["CountIntervals", "add", "add", "count", "add", "count"]
[[], [2, 3], [7, 10], [], [5, 8], []]
Output
[null, null, null, 6, null, 8]

Explanation
CountIntervals countIntervals = new CountIntervals(); // initialize the object with an empty set of intervals. 
countIntervals.add(2, 3);  // add [2, 3] to the set of intervals.
countIntervals.add(7, 10); // add [7, 10] to the set of intervals.
countIntervals.count();    // return 6
                           // the integers 2 and 3 are present in the interval [2, 3].
                           // the integers 7, 8, 9, and 10 are present in the interval [7, 10].
countIntervals.add(5, 8);  // add [5, 8] to the set of intervals.
countIntervals.count();    // return 8
                           // the integers 2 and 3 are present in the interval [2, 3].
                           // the integers 5 and 6 are present in the interval [5, 8].
                           // the integers 7 and 8 are present in the intervals [5, 8] and [7, 10].
                           // the integers 9 and 10 are present in the interval [7, 10].

  Constraints:

  • 1 <= left <= right <= 109

  • At most 105 calls in total will be made to add and count.

  • At least one call will be made to count.

Solution

  • class CountIntervals {
        private final TreeMap<Integer, Integer> map;
        private int count;
    
        public CountIntervals() {
            map = new TreeMap<>();
            map.put(-1, -1);
            map.put(1_000_000_001, 1_000_000_001);
            count = 0;
        }
    
        public void add(int left, int right) {
            Map.Entry<Integer, Integer> item =
                    map.floorEntry(left).getValue() < left
                            ? map.ceilingEntry(left)
                            : map.floorEntry(left);
            while (item.getKey() <= right) {
                left = Math.min(left, item.getKey());
                right = Math.max(right, item.getValue());
                count -= item.getValue() - item.getKey() + 1;
                map.remove(item.getKey());
                item = map.ceilingEntry(item.getKey());
            }
    
            map.put(left, right);
            count += right - left + 1;
        }
    
        public int count() {
            return count;
        }
    }
    
    /**
     * Your CountIntervals object will be instantiated and called as such:
     * CountIntervals obj = new CountIntervals();
     * obj.add(left,right);
     * int param_2 = obj.count();
     */
    
  • Todo
    
  • class Node:
        def __init__(self):
            self.tag = 0
            self.tot = 0
            self.left = None
            self.right = None
    
        def update(self, l, r, a, b):
            if self.tag == 1:
                return
            mid = (a + b) >> 1
            if l == a and r == b:
                self.tag = 1
                self.tot = b - a + 1
                return
            if not self.left:
                self.left = Node()
            if not self.right:
                self.right = Node()
            if mid >= l:
                self.left.update(l, min(mid, r), a, mid)
            if mid + 1 <= r:
                self.right.update(max(mid + 1, l), r, mid + 1, b)
            self.tag = 0
            self.tot = self.left.tot + self.right.tot
    
    
    class CountIntervals:
        def __init__(self):
            self.tree = Node()
    
        def add(self, left: int, right: int) -> None:
            self.tree.update(left, right, 0, 1000000010)
    
        def count(self) -> int:
            return self.tree.tot
    
    
    # Your CountIntervals object will be instantiated and called as such:
    # obj = CountIntervals()
    # obj.add(left,right)
    # param_2 = obj.count()
    
    ############
    
    # 2276. Count Integers in Intervals
    # https://leetcode.com/problems/count-integers-in-intervals
    
    from sortedcontainers import SortedList
    
    class CountIntervals:
    
        def __init__(self):
            self.sl = SortedList()
            self.res = 0
            
        def add(self, left: int, right: int) -> None:
            def overlap(l1, r1, l2, r2):
                lo = max(l1, l2)
                hi = min(r1, r2)
                
                return hi >= lo
    
            i = j = self.sl.bisect_left((left, -1))
            
            if i - 1 >= 0 and self.sl[i - 1][1] >= left:
                i -= 1
            
            while j < len(self.sl) and overlap(left, right, *self.sl[j]):
                j += 1
    
            for k in range(j - 1, i - 1, -1):
                L, R = self.sl[k]
                left = min(left, L)
                right = max(right, R)
                self.res -= R - L + 1
                del self.sl[k]
            
            self.res += right - left + 1
            self.sl.add((left, right))
    
        def count(self) -> int:
            return self.res
            
    
    
    # Your CountIntervals object will be instantiated and called as such:
    # obj = CountIntervals()
    # obj.add(left,right)
    # param_2 = obj.count()
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions