Welcome to Subscribe On Youtube
2389. Longest Subsequence With Limited Sum
Description
You are given an integer array nums
of length n
, and an integer array queries
of length m
.
Return an array answer
of length m
where answer[i]
is the maximum size of a subsequence that you can take from nums
such that the sum of its elements is less than or equal to queries[i]
.
A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [4,5,2,1], queries = [3,10,21] Output: [2,3,4] Explanation: We answer the queries as follows: - The subsequence [2,1] has a sum less than or equal to 3. It can be proven that 2 is the maximum size of such a subsequence, so answer[0] = 2. - The subsequence [4,5,1] has a sum less than or equal to 10. It can be proven that 3 is the maximum size of such a subsequence, so answer[1] = 3. - The subsequence [4,5,2,1] has a sum less than or equal to 21. It can be proven that 4 is the maximum size of such a subsequence, so answer[2] = 4.
Example 2:
Input: nums = [2,3,4,5], queries = [1] Output: [0] Explanation: The empty subsequence is the only subsequence that has a sum less than or equal to 1, so answer[0] = 0.
Constraints:
n == nums.length
m == queries.length
1 <= n, m <= 1000
1 <= nums[i], queries[i] <= 106
Solutions
-
class Solution { public int[] answerQueries(int[] nums, int[] queries) { Arrays.sort(nums); for (int i = 1; i < nums.length; ++i) { nums[i] += nums[i - 1]; } int m = queries.length; int[] ans = new int[m]; for (int i = 0; i < m; ++i) { ans[i] = search(nums, queries[i]); } return ans; } private int search(int[] nums, int x) { int l = 0, r = nums.length; while (l < r) { int mid = (l + r) >> 1; if (nums[mid] > x) { r = mid; } else { l = mid + 1; } } return l; } }
-
class Solution { public: vector<int> answerQueries(vector<int>& nums, vector<int>& queries) { sort(nums.begin(), nums.end()); for (int i = 1; i < nums.size(); i++) { nums[i] += nums[i - 1]; } vector<int> ans; for (auto& q : queries) { ans.push_back(upper_bound(nums.begin(), nums.end(), q) - nums.begin()); } return ans; } };
-
class Solution: def answerQueries(self, nums: List[int], queries: List[int]) -> List[int]: nums.sort() s = list(accumulate(nums)) return [bisect_right(s, q) for q in queries]
-
func answerQueries(nums []int, queries []int) (ans []int) { sort.Ints(nums) for i := 1; i < len(nums); i++ { nums[i] += nums[i-1] } for _, q := range queries { ans = append(ans, sort.SearchInts(nums, q+1)) } return }
-
function answerQueries(nums: number[], queries: number[]): number[] { nums.sort((a, b) => a - b); for (let i = 1; i < nums.length; i++) { nums[i] += nums[i - 1]; } const ans: number[] = []; const search = (nums: number[], x: number) => { let l = 0; let r = nums.length; while (l < r) { const mid = (l + r) >> 1; if (nums[mid] > x) { r = mid; } else { l = mid + 1; } } return l; }; for (const q of queries) { ans.push(search(nums, q)); } return ans; }
-
public class Solution { public int[] AnswerQueries(int[] nums, int[] queries) { int[] result = new int[queries.Length]; Array.Sort(nums); for (int i = 0; i < queries.Length; i++) { result[i] = getSubsequent(nums, queries[i]); } return result; } public int getSubsequent(int[] nums,int query) { int sum = 0; for (int i = 0; i < nums.Length; i++) { sum += nums[i]; if (sum > query) { return i; } } return nums.Length; } }
-
impl Solution { pub fn answer_queries(mut nums: Vec<i32>, queries: Vec<i32>) -> Vec<i32> { let n = nums.len(); nums.sort(); queries .into_iter() .map(|query| { let mut sum = 0; for i in 0..n { sum += nums[i]; if sum > query { return i as i32; } } n as i32 }) .collect() } }