Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2260.html

2260. Minimum Consecutive Cards to Pick Up

  • Difficulty: Medium.
  • Related Topics: Array, Hash Table, Sliding Window.
  • Similar Questions: Longest Substring Without Repeating Characters.

Problem

You are given an integer array cards where cards[i] represents the value of the ith card. A pair of cards are matching if the cards have the same value.

Return** the minimum number of consecutive cards you have to pick up to have a pair of matching cards among the picked cards.** If it is impossible to have matching cards, return -1.

  Example 1:

Input: cards = [3,4,2,3,4,7]
Output: 4
Explanation: We can pick up the cards [3,4,2,3] which contain a matching pair of cards with value 3. Note that picking up the cards [4,2,3,4] is also optimal.

Example 2:

Input: cards = [1,0,5,3]
Output: -1
Explanation: There is no way to pick up a set of consecutive cards that contain a pair of matching cards.

  Constraints:

  • 1 <= cards.length <= 105

  • 0 <= cards[i] <= 106

Solution (Java, C++, Python)

  • class Solution {
        public int minimumCardPickup(int[] cards) {
            int mindiff = Integer.MAX_VALUE;
            Map<Integer, Integer> map = new HashMap<>();
            int n = cards.length;
            for (int i = 0; i < n; i++) {
                if (map.containsKey(cards[i])) {
                    int j = map.get(cards[i]);
                    mindiff = Math.min(mindiff, i - j + 1);
                }
                map.put(cards[i], i);
            }
            if (mindiff == Integer.MAX_VALUE) {
                return -1;
            }
            return mindiff;
        }
    }
    
    ############
    
    class Solution {
        public int minimumCardPickup(int[] cards) {
            Map<Integer, Integer> last = new HashMap<>();
            int n = cards.length;
            int ans = n + 1;
            for (int i = 0; i < n; ++i) {
                if (last.containsKey(cards[i])) {
                    ans = Math.min(ans, i - last.get(cards[i]) + 1);
                }
                last.put(cards[i], i);
            }
            return ans > n ? -1 : ans;
        }
    }
    
  • class Solution:
        def minimumCardPickup(self, cards: List[int]) -> int:
            m = {}
            ans = 10**6
            for i, c in enumerate(cards):
                if c in m:
                    ans = min(ans, i - m[c] + 1)
                m[c] = i
            return -1 if ans == 10**6 else ans
    
    ############
    
    # 2260. Minimum Consecutive Cards to Pick Up
    # https://leetcode.com/problems/minimum-consecutive-cards-to-pick-up/
    
    class Solution:
        def minimumCardPickup(self, cards: List[int]) -> int:
            res = float('inf')
            last = {}
            
            for j, x in enumerate(cards):
                if x in last:
                    res = min(res, j - last[x] + 1)
                    
                last[x] = j
            
            
            return -1 if res == float('inf') else res
    
    
  • class Solution {
    public:
        int minimumCardPickup(vector<int>& cards) {
            unordered_map<int, int> last;
            int n = cards.size();
            int ans = n + 1;
            for (int i = 0; i < n; ++i) {
                if (last.count(cards[i])) {
                    ans = min(ans, i - last[cards[i]] + 1);
                }
                last[cards[i]] = i;
            }
            return ans > n ? -1 : ans;
        }
    };
    
  • func minimumCardPickup(cards []int) int {
    	last := map[int]int{}
    	n := len(cards)
    	ans := n + 1
    	for i, x := range cards {
    		if j, ok := last[x]; ok && ans > i-j+1 {
    			ans = i - j + 1
    		}
    		last[x] = i
    	}
    	if ans > n {
    		return -1
    	}
    	return ans
    }
    
  • function minimumCardPickup(cards: number[]): number {
        const n = cards.length;
        const last = new Map<number, number>();
        let ans = n + 1;
        for (let i = 0; i < n; ++i) {
            if (last.has(cards[i])) {
                ans = Math.min(ans, i - last.get(cards[i]) + 1);
            }
            last.set(cards[i], i);
        }
        return ans > n ? -1 : ans;
    }
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions