Welcome to Subscribe On Youtube

2370. Longest Ideal Subsequence

Description

You are given a string s consisting of lowercase letters and an integer k. We call a string t ideal if the following conditions are satisfied:

  • t is a subsequence of the string s.
  • The absolute difference in the alphabet order of every two adjacent letters in t is less than or equal to k.

Return the length of the longest ideal string.

A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.

Note that the alphabet order is not cyclic. For example, the absolute difference in the alphabet order of 'a' and 'z' is 25, not 1.

 

Example 1:

Input: s = "acfgbd", k = 2
Output: 4
Explanation: The longest ideal string is "acbd". The length of this string is 4, so 4 is returned.
Note that "acfgbd" is not ideal because 'c' and 'f' have a difference of 3 in alphabet order.

Example 2:

Input: s = "abcd", k = 3
Output: 4
Explanation: The longest ideal string is "abcd". The length of this string is 4, so 4 is returned.

 

Constraints:

  • 1 <= s.length <= 105
  • 0 <= k <= 25
  • s consists of lowercase English letters.

Solutions

  • class Solution {
        public int longestIdealString(String s, int k) {
            int n = s.length();
            int ans = 1;
            int[] dp = new int[n];
            Arrays.fill(dp, 1);
            Map<Character, Integer> d = new HashMap<>(26);
            d.put(s.charAt(0), 0);
            for (int i = 1; i < n; ++i) {
                char a = s.charAt(i);
                for (char b = 'a'; b <= 'z'; ++b) {
                    if (Math.abs(a - b) > k) {
                        continue;
                    }
                    if (d.containsKey(b)) {
                        dp[i] = Math.max(dp[i], dp[d.get(b)] + 1);
                    }
                }
                d.put(a, i);
                ans = Math.max(ans, dp[i]);
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int longestIdealString(string s, int k) {
            int n = s.size();
            int ans = 1;
            vector<int> dp(n, 1);
            unordered_map<char, int> d;
            d[s[0]] = 0;
            for (int i = 1; i < n; ++i) {
                char a = s[i];
                for (char b = 'a'; b <= 'z'; ++b) {
                    if (abs(a - b) > k) continue;
                    if (d.count(b)) dp[i] = max(dp[i], dp[d[b]] + 1);
                }
                d[a] = i;
                ans = max(ans, dp[i]);
            }
            return ans;
        }
    };
    
  • class Solution:
        def longestIdealString(self, s: str, k: int) -> int:
            n = len(s)
            ans = 1
            dp = [1] * n
            d = {s[0]: 0}
            for i in range(1, n):
                a = ord(s[i])
                for b in ascii_lowercase:
                    if abs(a - ord(b)) > k:
                        continue
                    if b in d:
                        dp[i] = max(dp[i], dp[d[b]] + 1)
                d[s[i]] = i
            return max(dp)
    
    
  • func longestIdealString(s string, k int) int {
    	n := len(s)
    	ans := 1
    	dp := make([]int, n)
    	for i := range dp {
    		dp[i] = 1
    	}
    	d := map[byte]int{s[0]: 0}
    	for i := 1; i < n; i++ {
    		a := s[i]
    		for b := byte('a'); b <= byte('z'); b++ {
    			if int(a)-int(b) > k || int(b)-int(a) > k {
    				continue
    			}
    			if v, ok := d[b]; ok {
    				dp[i] = max(dp[i], dp[v]+1)
    			}
    		}
    		d[a] = i
    		ans = max(ans, dp[i])
    	}
    	return ans
    }
    
  • function longestIdealString(s: string, k: number): number {
        const dp = new Array(26).fill(0);
        for (const c of s) {
            const x = c.charCodeAt(0) - 'a'.charCodeAt(0);
            let t = 0;
            for (let i = 0; i < 26; i++) {
                if (Math.abs(x - i) <= k) {
                    t = Math.max(t, dp[i] + 1);
                }
            }
            dp[x] = Math.max(dp[x], t);
        }
    
        return dp.reduce((r, c) => Math.max(r, c), 0);
    }
    
    

All Problems

All Solutions