Welcome to Subscribe On Youtube
2366. Minimum Replacements to Sort the Array
Description
You are given a 0-indexed integer array nums
. In one operation you can replace any element of the array with any two elements that sum to it.
- For example, consider
nums = [5,6,7]
. In one operation, we can replacenums[1]
with2
and4
and convertnums
to[5,2,4,7]
.
Return the minimum number of operations to make an array that is sorted in non-decreasing order.
Example 1:
Input: nums = [3,9,3] Output: 2 Explanation: Here are the steps to sort the array in non-decreasing order: - From [3,9,3], replace the 9 with 3 and 6 so the array becomes [3,3,6,3] - From [3,3,6,3], replace the 6 with 3 and 3 so the array becomes [3,3,3,3,3] There are 2 steps to sort the array in non-decreasing order. Therefore, we return 2.
Example 2:
Input: nums = [1,2,3,4,5] Output: 0 Explanation: The array is already in non-decreasing order. Therefore, we return 0.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions
-
class Solution { public long minimumReplacement(int[] nums) { long ans = 0; int n = nums.length; int mx = nums[n - 1]; for (int i = n - 2; i >= 0; --i) { if (nums[i] <= mx) { mx = nums[i]; continue; } int k = (nums[i] + mx - 1) / mx; ans += k - 1; mx = nums[i] / k; } return ans; } }
-
class Solution { public: long long minimumReplacement(vector<int>& nums) { long long ans = 0; int n = nums.size(); int mx = nums[n - 1]; for (int i = n - 2; i >= 0; --i) { if (nums[i] <= mx) { mx = nums[i]; continue; } int k = (nums[i] + mx - 1) / mx; ans += k - 1; mx = nums[i] / k; } return ans; } };
-
class Solution: def minimumReplacement(self, nums: List[int]) -> int: ans = 0 n = len(nums) mx = nums[-1] for i in range(n - 2, -1, -1): if nums[i] <= mx: mx = nums[i] continue k = (nums[i] + mx - 1) // mx ans += k - 1 mx = nums[i] // k return ans
-
func minimumReplacement(nums []int) (ans int64) { n := len(nums) mx := nums[n-1] for i := n - 2; i >= 0; i-- { if nums[i] <= mx { mx = nums[i] continue } k := (nums[i] + mx - 1) / mx ans += int64(k - 1) mx = nums[i] / k } return }
-
function minimumReplacement(nums: number[]): number { const n = nums.length; let mx = nums[n - 1]; let ans = 0; for (let i = n - 2; i >= 0; --i) { if (nums[i] <= mx) { mx = nums[i]; continue; } const k = Math.ceil(nums[i] / mx); ans += k - 1; mx = Math.floor(nums[i] / k); } return ans; }
-
impl Solution { #[allow(dead_code)] pub fn minimum_replacement(nums: Vec<i32>) -> i64 { if nums.len() == 1 { return 0; } let n = nums.len(); let mut max = *nums.last().unwrap(); let mut ret = 0; for i in (0..=n - 2).rev() { if nums[i] <= max { max = nums[i]; continue; } // Otherwise make the substitution let k = (nums[i] + max - 1) / max; ret += (k - 1) as i64; // Update the max value, which should be the minimum among the substitution max = nums[i] / k; } ret } }