Welcome to Subscribe On Youtube
2349. Design a Number Container System
Description
Design a number container system that can do the following:
- Insert or Replace a number at the given index in the system.
- Return the smallest index for the given number in the system.
Implement the NumberContainers
class:
NumberContainers()
Initializes the number container system.void change(int index, int number)
Fills the container atindex
with thenumber
. If there is already a number at thatindex
, replace it.int find(int number)
Returns the smallest index for the givennumber
, or-1
if there is no index that is filled bynumber
in the system.
Example 1:
Input ["NumberContainers", "find", "change", "change", "change", "change", "find", "change", "find"] [[], [10], [2, 10], [1, 10], [3, 10], [5, 10], [10], [1, 20], [10]] Output [null, -1, null, null, null, null, 1, null, 2] Explanation NumberContainers nc = new NumberContainers(); nc.find(10); // There is no index that is filled with number 10. Therefore, we return -1. nc.change(2, 10); // Your container at index 2 will be filled with number 10. nc.change(1, 10); // Your container at index 1 will be filled with number 10. nc.change(3, 10); // Your container at index 3 will be filled with number 10. nc.change(5, 10); // Your container at index 5 will be filled with number 10. nc.find(10); // Number 10 is at the indices 1, 2, 3, and 5. Since the smallest index that is filled with 10 is 1, we return 1. nc.change(1, 20); // Your container at index 1 will be filled with number 20. Note that index 1 was filled with 10 and then replaced with 20. nc.find(10); // Number 10 is at the indices 2, 3, and 5. The smallest index that is filled with 10 is 2. Therefore, we return 2.
Constraints:
1 <= index, number <= 109
- At most
105
calls will be made in total tochange
andfind
.
Solutions
-
class NumberContainers { private Map<Integer, Integer> mp = new HashMap<>(); private Map<Integer, TreeSet<Integer>> t = new HashMap<>(); public NumberContainers() { } public void change(int index, int number) { if (mp.containsKey(index)) { int v = mp.get(index); t.get(v).remove(index); if (t.get(v).isEmpty()) { t.remove(v); } } mp.put(index, number); t.computeIfAbsent(number, k -> new TreeSet<>()).add(index); } public int find(int number) { return t.containsKey(number) ? t.get(number).first() : -1; } } /** * Your NumberContainers object will be instantiated and called as such: * NumberContainers obj = new NumberContainers(); * obj.change(index,number); * int param_2 = obj.find(number); */
-
class NumberContainers { public: map<int, int> mp; map<int, set<int>> t; NumberContainers() { } void change(int index, int number) { auto it = mp.find(index); if (it != mp.end()) { t[it->second].erase(index); it->second = number; } else mp[index] = number; t[number].insert(index); } int find(int number) { auto it = t.find(number); return it == t.end() || it->second.empty() ? -1 : *it->second.begin(); } }; /** * Your NumberContainers object will be instantiated and called as such: * NumberContainers* obj = new NumberContainers(); * obj->change(index,number); * int param_2 = obj->find(number); */
-
from sortedcontainers import SortedSet class NumberContainers: def __init__(self): self.mp = {} self.t = defaultdict(SortedSet) def change(self, index: int, number: int) -> None: if index in self.mp: v = self.mp[index] self.t[v].remove(index) self.mp[index] = number self.t[number].add(index) def find(self, number: int) -> int: s = self.t[number] return s[0] if s else -1 # Your NumberContainers object will be instantiated and called as such: # obj = NumberContainers() # obj.change(index,number) # param_2 = obj.find(number)
-
type NumberContainers struct { mp map[int]int t map[int]*redblacktree.Tree } func Constructor() NumberContainers { return NumberContainers{map[int]int{}, map[int]*redblacktree.Tree{} } } func (this *NumberContainers) Change(index int, number int) { if num, ok := this.mp[index]; ok { this.t[num].Remove(index) } this.mp[index] = number if this.t[number] == nil { this.t[number] = redblacktree.NewWithIntComparator() } this.t[number].Put(index, nil) } func (this *NumberContainers) Find(number int) int { s, ok := this.t[number] if !ok || s.Size() == 0 { return -1 } return s.Left().Key.(int) } /** * Your NumberContainers object will be instantiated and called as such: * obj := Constructor(); * obj.Change(index,number); * param_2 := obj.Find(number); */
-
class NumberContainers { private d = new Map<number, number>(); private g = new Map<number, TreeSet<number>>(); constructor() {} change(index: number, number: number): void { if (this.d.has(index)) { const oldNumber = this.d.get(index)!; this.g.get(oldNumber)!.delete(index); if (!this.g.get(oldNumber)!.size()) { this.g.delete(oldNumber); } } this.d.set(index, number); if (!this.g.has(number)) { this.g.set(number, new TreeSet()); } this.g.get(number)!.add(index); } find(number: number): number { return this.g.has(number) ? this.g.get(number)!.first()! : -1; } } type Compare<T> = (lhs: T, rhs: T) => number; class RBTreeNode<T = number> { data: T; count: number; left: RBTreeNode<T> | null; right: RBTreeNode<T> | null; parent: RBTreeNode<T> | null; color: number; constructor(data: T) { this.data = data; this.left = this.right = this.parent = null; this.color = 0; this.count = 1; } sibling(): RBTreeNode<T> | null { if (!this.parent) return null; // sibling null if no parent return this.isOnLeft() ? this.parent.right : this.parent.left; } isOnLeft(): boolean { return this === this.parent!.left; } hasRedChild(): boolean { return ( Boolean(this.left && this.left.color === 0) || Boolean(this.right && this.right.color === 0) ); } } class RBTree<T> { root: RBTreeNode<T> | null; lt: (l: T, r: T) => boolean; constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) { this.root = null; this.lt = (l: T, r: T) => compare(l, r) < 0; } rotateLeft(pt: RBTreeNode<T>): void { const right = pt.right!; pt.right = right.left; if (pt.right) pt.right.parent = pt; right.parent = pt.parent; if (!pt.parent) this.root = right; else if (pt === pt.parent.left) pt.parent.left = right; else pt.parent.right = right; right.left = pt; pt.parent = right; } rotateRight(pt: RBTreeNode<T>): void { const left = pt.left!; pt.left = left.right; if (pt.left) pt.left.parent = pt; left.parent = pt.parent; if (!pt.parent) this.root = left; else if (pt === pt.parent.left) pt.parent.left = left; else pt.parent.right = left; left.right = pt; pt.parent = left; } swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void { const tmp = p1.color; p1.color = p2.color; p2.color = tmp; } swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void { const tmp = p1.data; p1.data = p2.data; p2.data = tmp; } fixAfterInsert(pt: RBTreeNode<T>): void { let parent = null; let grandParent = null; while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) { parent = pt.parent; grandParent = pt.parent.parent; /* Case : A Parent of pt is left child of Grand-parent of pt */ if (parent === grandParent?.left) { const uncle = grandParent.right; /* Case : 1 The uncle of pt is also red Only Recoloring required */ if (uncle && uncle.color === 0) { grandParent.color = 0; parent.color = 1; uncle.color = 1; pt = grandParent; } else { /* Case : 2 pt is right child of its parent Left-rotation required */ if (pt === parent.right) { this.rotateLeft(parent); pt = parent; parent = pt.parent; } /* Case : 3 pt is left child of its parent Right-rotation required */ this.rotateRight(grandParent); this.swapColor(parent!, grandParent); pt = parent!; } } else { /* Case : B Parent of pt is right child of Grand-parent of pt */ const uncle = grandParent!.left; /* Case : 1 The uncle of pt is also red Only Recoloring required */ if (uncle != null && uncle.color === 0) { grandParent!.color = 0; parent.color = 1; uncle.color = 1; pt = grandParent!; } else { /* Case : 2 pt is left child of its parent Right-rotation required */ if (pt === parent.left) { this.rotateRight(parent); pt = parent; parent = pt.parent; } /* Case : 3 pt is right child of its parent Left-rotation required */ this.rotateLeft(grandParent!); this.swapColor(parent!, grandParent!); pt = parent!; } } } this.root!.color = 1; } delete(val: T): boolean { const node = this.find(val); if (!node) return false; node.count--; if (!node.count) this.deleteNode(node); return true; } deleteAll(val: T): boolean { const node = this.find(val); if (!node) return false; this.deleteNode(node); return true; } deleteNode(v: RBTreeNode<T>): void { const u = BSTreplace(v); // True when u and v are both black const uvBlack = (u === null || u.color === 1) && v.color === 1; const parent = v.parent!; if (!u) { // u is null therefore v is leaf if (v === this.root) this.root = null; // v is root, making root null else { if (uvBlack) { // u and v both black // v is leaf, fix double black at v this.fixDoubleBlack(v); } else { // u or v is red if (v.sibling()) { // sibling is not null, make it red" v.sibling()!.color = 0; } } // delete v from the tree if (v.isOnLeft()) parent.left = null; else parent.right = null; } return; } if (!v.left || !v.right) { // v has 1 child if (v === this.root) { // v is root, assign the value of u to v, and delete u v.data = u.data; v.left = v.right = null; } else { // Detach v from tree and move u up if (v.isOnLeft()) parent.left = u; else parent.right = u; u.parent = parent; if (uvBlack) this.fixDoubleBlack(u); // u and v both black, fix double black at u else u.color = 1; // u or v red, color u black } return; } // v has 2 children, swap data with successor and recurse this.swapData(u, v); this.deleteNode(u); // find node that replaces a deleted node in BST function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null { // when node have 2 children if (x.left && x.right) return successor(x.right); // when leaf if (!x.left && !x.right) return null; // when single child return x.left ?? x.right; } // find node that do not have a left child // in the subtree of the given node function successor(x: RBTreeNode<T>): RBTreeNode<T> { let temp = x; while (temp.left) temp = temp.left; return temp; } } fixDoubleBlack(x: RBTreeNode<T>): void { if (x === this.root) return; // Reached root const sibling = x.sibling(); const parent = x.parent!; if (!sibling) { // No sibiling, double black pushed up this.fixDoubleBlack(parent); } else { if (sibling.color === 0) { // Sibling red parent.color = 0; sibling.color = 1; if (sibling.isOnLeft()) this.rotateRight(parent); // left case else this.rotateLeft(parent); // right case this.fixDoubleBlack(x); } else { // Sibling black if (sibling.hasRedChild()) { // at least 1 red children if (sibling.left && sibling.left.color === 0) { if (sibling.isOnLeft()) { // left left sibling.left.color = sibling.color; sibling.color = parent.color; this.rotateRight(parent); } else { // right left sibling.left.color = parent.color; this.rotateRight(sibling); this.rotateLeft(parent); } } else { if (sibling.isOnLeft()) { // left right sibling.right!.color = parent.color; this.rotateLeft(sibling); this.rotateRight(parent); } else { // right right sibling.right!.color = sibling.color; sibling.color = parent.color; this.rotateLeft(parent); } } parent.color = 1; } else { // 2 black children sibling.color = 0; if (parent.color === 1) this.fixDoubleBlack(parent); else parent.color = 1; } } } } insert(data: T): boolean { // search for a position to insert let parent = this.root; while (parent) { if (this.lt(data, parent.data)) { if (!parent.left) break; else parent = parent.left; } else if (this.lt(parent.data, data)) { if (!parent.right) break; else parent = parent.right; } else break; } // insert node into parent const node = new RBTreeNode(data); if (!parent) this.root = node; else if (this.lt(node.data, parent.data)) parent.left = node; else if (this.lt(parent.data, node.data)) parent.right = node; else { parent.count++; return false; } node.parent = parent; this.fixAfterInsert(node); return true; } find(data: T): RBTreeNode<T> | null { let p = this.root; while (p) { if (this.lt(data, p.data)) { p = p.left; } else if (this.lt(p.data, data)) { p = p.right; } else break; } return p ?? null; } *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> { if (!root) return; for (const v of this.inOrder(root.left!)) yield v; yield root.data; for (const v of this.inOrder(root.right!)) yield v; } *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> { if (!root) return; for (const v of this.reverseInOrder(root.right!)) yield v; yield root.data; for (const v of this.reverseInOrder(root.left!)) yield v; } } class TreeSet<T = number> { _size: number; tree: RBTree<T>; compare: Compare<T>; constructor( collection: T[] | Compare<T> = [], compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0), ) { if (typeof collection === 'function') { compare = collection; collection = []; } this._size = 0; this.compare = compare; this.tree = new RBTree(compare); for (const val of collection) this.add(val); } size(): number { return this._size; } has(val: T): boolean { return !!this.tree.find(val); } add(val: T): boolean { const successful = this.tree.insert(val); this._size += successful ? 1 : 0; return successful; } delete(val: T): boolean { const deleted = this.tree.deleteAll(val); this._size -= deleted ? 1 : 0; return deleted; } ceil(val: T): T | undefined { let p = this.tree.root; let higher = null; while (p) { if (this.compare(p.data, val) >= 0) { higher = p; p = p.left; } else { p = p.right; } } return higher?.data; } floor(val: T): T | undefined { let p = this.tree.root; let lower = null; while (p) { if (this.compare(val, p.data) >= 0) { lower = p; p = p.right; } else { p = p.left; } } return lower?.data; } higher(val: T): T | undefined { let p = this.tree.root; let higher = null; while (p) { if (this.compare(val, p.data) < 0) { higher = p; p = p.left; } else { p = p.right; } } return higher?.data; } lower(val: T): T | undefined { let p = this.tree.root; let lower = null; while (p) { if (this.compare(p.data, val) < 0) { lower = p; p = p.right; } else { p = p.left; } } return lower?.data; } first(): T | undefined { return this.tree.inOrder().next().value; } last(): T | undefined { return this.tree.reverseInOrder().next().value; } shift(): T | undefined { const first = this.first(); if (first === undefined) return undefined; this.delete(first); return first; } pop(): T | undefined { const last = this.last(); if (last === undefined) return undefined; this.delete(last); return last; } *[Symbol.iterator](): Generator<T, void, void> { for (const val of this.values()) yield val; } *keys(): Generator<T, void, void> { for (const val of this.values()) yield val; } *values(): Generator<T, undefined, void> { for (const val of this.tree.inOrder()) yield val; return undefined; } /** * Return a generator for reverse order traversing the set */ *rvalues(): Generator<T, undefined, void> { for (const val of this.tree.reverseInOrder()) yield val; return undefined; } } /** * Your NumberContainers object will be instantiated and called as such: * var obj = new NumberContainers() * obj.change(index,number) * var param_2 = obj.find(number) */