Welcome to Subscribe On Youtube
2342. Max Sum of a Pair With Equal Sum of Digits
Description
You are given a 0-indexed array nums
consisting of positive integers. You can choose two indices i
and j
, such that i != j
, and the sum of digits of the number nums[i]
is equal to that of nums[j]
.
Return the maximum value of nums[i] + nums[j]
that you can obtain over all possible indices i
and j
that satisfy the conditions.
Example 1:
Input: nums = [18,43,36,13,7] Output: 54 Explanation: The pairs (i, j) that satisfy the conditions are: - (0, 2), both numbers have a sum of digits equal to 9, and their sum is 18 + 36 = 54. - (1, 4), both numbers have a sum of digits equal to 7, and their sum is 43 + 7 = 50. So the maximum sum that we can obtain is 54.
Example 2:
Input: nums = [10,12,19,14] Output: -1 Explanation: There are no two numbers that satisfy the conditions, so we return -1.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions
Solution 1: Hash Table
We can use a hash table $d$ to record the maximum value corresponding to each digit sum, and initialize an answer variable $ans = -1$.
Next, we traverse the array $nums$. For each number $v$, we calculate its digit sum $x$. If $x$ exists in the hash table $d$, then we update the answer $ans = \max(ans, d[x] + v)$. Then update the hash table $d[x] = \max(d[x], v)$.
Finally, return the answer $ans$.
Since the maximum element in $nums$ is $10^9$, the maximum digit sum is $9 \times 9 = 81$. We can directly define an array $d$ of length $100$ to replace the hash table.
The time complexity is $O(n \times \log M)$, and the space complexity is $O(D)$. Here, $n$ is the length of the array $nums$, and $M$ and $D$ are the maximum value of the elements in the array $nums$ and the maximum value of the digit sum, respectively. In this problem, $M \leq 10^9$, $D \leq 81$.
-
class Solution { public int maximumSum(int[] nums) { int[] d = new int[100]; int ans = -1; for (int v : nums) { int x = 0; for (int y = v; y > 0; y /= 10) { x += y % 10; } if (d[x] > 0) { ans = Math.max(ans, d[x] + v); } d[x] = Math.max(d[x], v); } return ans; } }
-
class Solution { public: int maximumSum(vector<int>& nums) { int d[100]{}; int ans = -1; for (int v : nums) { int x = 0; for (int y = v; y; y /= 10) { x += y % 10; } if (d[x]) { ans = max(ans, d[x] + v); } d[x] = max(d[x], v); } return ans; } };
-
class Solution: def maximumSum(self, nums: List[int]) -> int: d = defaultdict(int) ans = -1 for v in nums: x, y = 0, v while y: x += y % 10 y //= 10 if x in d: ans = max(ans, d[x] + v) d[x] = max(d[x], v) return ans
-
func maximumSum(nums []int) int { d := [100]int{} ans := -1 for _, v := range nums { x := 0 for y := v; y > 0; y /= 10 { x += y % 10 } if d[x] > 0 { ans = max(ans, d[x]+v) } d[x] = max(d[x], v) } return ans }
-
function maximumSum(nums: number[]): number { const d: number[] = Array(100).fill(0); let ans = -1; for (const v of nums) { let x = 0; for (let y = v; y; y = (y / 10) | 0) { x += y % 10; } if (d[x]) { ans = Math.max(ans, d[x] + v); } d[x] = Math.max(d[x], v); } return ans; }
-
impl Solution { pub fn maximum_sum(nums: Vec<i32>) -> i32 { let mut d = vec![0; 100]; let mut ans = -1; for &v in nums.iter() { let mut x: usize = 0; let mut y = v; while y > 0 { x += (y % 10) as usize; y /= 10; } if d[x] > 0 { ans = ans.max(d[x] + v); } d[x] = d[x].max(v); } ans } }