Welcome to Subscribe On Youtube

2336. Smallest Number in Infinite Set

Description

You have a set which contains all positive integers [1, 2, 3, 4, 5, ...].

Implement the SmallestInfiniteSet class:

  • SmallestInfiniteSet() Initializes the SmallestInfiniteSet object to contain all positive integers.
  • int popSmallest() Removes and returns the smallest integer contained in the infinite set.
  • void addBack(int num) Adds a positive integer num back into the infinite set, if it is not already in the infinite set.

 

Example 1:

Input
["SmallestInfiniteSet", "addBack", "popSmallest", "popSmallest", "popSmallest", "addBack", "popSmallest", "popSmallest", "popSmallest"]
[[], [2], [], [], [], [1], [], [], []]
Output
[null, null, 1, 2, 3, null, 1, 4, 5]

Explanation
SmallestInfiniteSet smallestInfiniteSet = new SmallestInfiniteSet();
smallestInfiniteSet.addBack(2);    // 2 is already in the set, so no change is made.
smallestInfiniteSet.popSmallest(); // return 1, since 1 is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 2, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 3, and remove it from the set.
smallestInfiniteSet.addBack(1);    // 1 is added back to the set.
smallestInfiniteSet.popSmallest(); // return 1, since 1 was added back to the set and
                                   // is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 4, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 5, and remove it from the set.

 

Constraints:

  • 1 <= num <= 1000
  • At most 1000 calls will be made in total to popSmallest and addBack.

Solutions

Solution 1: Ordered Set + Simulation

We note that the range of elements in the set given by the problem is $[1, 1000]$, and the operations we need to support are:

  • popSmallest: Pop the smallest element from the set
  • addBack: Add an element back to the set

Therefore, we can use an ordered set to simulate this. Let’s denote the ordered set as $s$, and the elements in the set as $s_1, s_2, \cdots, s_n$, where $n$ is the number of elements in the ordered set. In this problem, $n \le 1000$.

During initialization, we add all elements in $[1, 1000]$ to the ordered set. The time complexity is $O(n \times \log n)$.

In the popSmallest operation, we just need to pop the first element from the ordered set. The time complexity for a single operation is $O(\log n)$.

In the addBack operation, we just need to add the element back to the ordered set. The time complexity for a single operation is $O(\log n)$.

The space complexity is $O(n)$.

  • class SmallestInfiniteSet {
        private TreeSet<Integer> s = new TreeSet<>();
    
        public SmallestInfiniteSet() {
            for (int i = 1; i <= 1000; ++i) {
                s.add(i);
            }
        }
    
        public int popSmallest() {
            return s.pollFirst();
        }
    
        public void addBack(int num) {
            s.add(num);
        }
    }
    
    /**
     * Your SmallestInfiniteSet object will be instantiated and called as such:
     * SmallestInfiniteSet obj = new SmallestInfiniteSet();
     * int param_1 = obj.popSmallest();
     * obj.addBack(num);
     */
    
  • class SmallestInfiniteSet {
    public:
        SmallestInfiniteSet() {
            for (int i = 1; i <= 1000; ++i) {
                s.insert(i);
            }
        }
    
        int popSmallest() {
            int x = *s.begin();
            s.erase(s.begin());
            return x;
        }
    
        void addBack(int num) {
            s.insert(num);
        }
    
    private:
        set<int> s;
    };
    
    /**
     * Your SmallestInfiniteSet object will be instantiated and called as such:
     * SmallestInfiniteSet* obj = new SmallestInfiniteSet();
     * int param_1 = obj->popSmallest();
     * obj->addBack(num);
     */
    
  • from sortedcontainers import SortedSet
    
    
    class SmallestInfiniteSet:
        def __init__(self):
            self.s = SortedSet(range(1, 1001))
    
        def popSmallest(self) -> int:
            x = self.s[0]
            self.s.remove(x)
            return x
    
        def addBack(self, num: int) -> None:
            self.s.add(num)
    
    
    # Your SmallestInfiniteSet object will be instantiated and called as such:
    # obj = SmallestInfiniteSet()
    # param_1 = obj.popSmallest()
    # obj.addBack(num)
    
    
  • type SmallestInfiniteSet struct {
    	s *treemap.Map
    }
    
    func Constructor() SmallestInfiniteSet {
    	s := treemap.NewWithIntComparator()
    	for i := 1; i <= 1000; i++ {
    		s.Put(i, nil)
    	}
    	return SmallestInfiniteSet{s}
    }
    
    func (this *SmallestInfiniteSet) PopSmallest() int {
    	x, _ := this.s.Min()
    	this.s.Remove(x.(int))
    	return x.(int)
    }
    
    func (this *SmallestInfiniteSet) AddBack(num int) {
    	this.s.Put(num, nil)
    }
    
    /**
     * Your SmallestInfiniteSet object will be instantiated and called as such:
     * obj := Constructor();
     * param_1 := obj.PopSmallest();
     * obj.AddBack(num);
     */
    
  • class SmallestInfiniteSet {
        private s: TreeSet<number>;
    
        constructor() {
            this.s = new TreeSet();
            for (let i = 1; i <= 1000; ++i) {
                this.s.add(i);
            }
        }
    
        popSmallest(): number {
            return this.s.shift()!;
        }
    
        addBack(num: number): void {
            this.s.add(num);
        }
    }
    
    type Compare<T> = (lhs: T, rhs: T) => number;
    
    class RBTreeNode<T = number> {
        data: T;
        count: number;
        left: RBTreeNode<T> | null;
        right: RBTreeNode<T> | null;
        parent: RBTreeNode<T> | null;
        color: number;
        constructor(data: T) {
            this.data = data;
            this.left = this.right = this.parent = null;
            this.color = 0;
            this.count = 1;
        }
    
        sibling(): RBTreeNode<T> | null {
            if (!this.parent) return null; // sibling null if no parent
            return this.isOnLeft() ? this.parent.right : this.parent.left;
        }
    
        isOnLeft(): boolean {
            return this === this.parent!.left;
        }
    
        hasRedChild(): boolean {
            return (
                Boolean(this.left && this.left.color === 0) ||
                Boolean(this.right && this.right.color === 0)
            );
        }
    }
    
    class RBTree<T> {
        root: RBTreeNode<T> | null;
        lt: (l: T, r: T) => boolean;
        constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
            this.root = null;
            this.lt = (l: T, r: T) => compare(l, r) < 0;
        }
    
        rotateLeft(pt: RBTreeNode<T>): void {
            const right = pt.right!;
            pt.right = right.left;
    
            if (pt.right) pt.right.parent = pt;
            right.parent = pt.parent;
    
            if (!pt.parent) this.root = right;
            else if (pt === pt.parent.left) pt.parent.left = right;
            else pt.parent.right = right;
    
            right.left = pt;
            pt.parent = right;
        }
    
        rotateRight(pt: RBTreeNode<T>): void {
            const left = pt.left!;
            pt.left = left.right;
    
            if (pt.left) pt.left.parent = pt;
            left.parent = pt.parent;
    
            if (!pt.parent) this.root = left;
            else if (pt === pt.parent.left) pt.parent.left = left;
            else pt.parent.right = left;
    
            left.right = pt;
            pt.parent = left;
        }
    
        swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
            const tmp = p1.color;
            p1.color = p2.color;
            p2.color = tmp;
        }
    
        swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
            const tmp = p1.data;
            p1.data = p2.data;
            p2.data = tmp;
        }
    
        fixAfterInsert(pt: RBTreeNode<T>): void {
            let parent = null;
            let grandParent = null;
    
            while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
                parent = pt.parent;
                grandParent = pt.parent.parent;
    
                /*  Case : A
                    Parent of pt is left child of Grand-parent of pt */
                if (parent === grandParent?.left) {
                    const uncle = grandParent.right;
    
                    /* Case : 1
                       The uncle of pt is also red
                       Only Recoloring required */
                    if (uncle && uncle.color === 0) {
                        grandParent.color = 0;
                        parent.color = 1;
                        uncle.color = 1;
                        pt = grandParent;
                    } else {
                        /* Case : 2
                           pt is right child of its parent
                           Left-rotation required */
                        if (pt === parent.right) {
                            this.rotateLeft(parent);
                            pt = parent;
                            parent = pt.parent;
                        }
    
                        /* Case : 3
                           pt is left child of its parent
                           Right-rotation required */
                        this.rotateRight(grandParent);
                        this.swapColor(parent!, grandParent);
                        pt = parent!;
                    }
                } else {
                    /* Case : B
                   Parent of pt is right child of Grand-parent of pt */
                    const uncle = grandParent!.left;
    
                    /*  Case : 1
                        The uncle of pt is also red
                        Only Recoloring required */
                    if (uncle != null && uncle.color === 0) {
                        grandParent!.color = 0;
                        parent.color = 1;
                        uncle.color = 1;
                        pt = grandParent!;
                    } else {
                        /* Case : 2
                           pt is left child of its parent
                           Right-rotation required */
                        if (pt === parent.left) {
                            this.rotateRight(parent);
                            pt = parent;
                            parent = pt.parent;
                        }
    
                        /* Case : 3
                           pt is right child of its parent
                           Left-rotation required */
                        this.rotateLeft(grandParent!);
                        this.swapColor(parent!, grandParent!);
                        pt = parent!;
                    }
                }
            }
            this.root!.color = 1;
        }
    
        delete(val: T): boolean {
            const node = this.find(val);
            if (!node) return false;
            node.count--;
            if (!node.count) this.deleteNode(node);
            return true;
        }
    
        deleteAll(val: T): boolean {
            const node = this.find(val);
            if (!node) return false;
            this.deleteNode(node);
            return true;
        }
    
        deleteNode(v: RBTreeNode<T>): void {
            const u = BSTreplace(v);
    
            // True when u and v are both black
            const uvBlack = (u === null || u.color === 1) && v.color === 1;
            const parent = v.parent!;
    
            if (!u) {
                // u is null therefore v is leaf
                if (v === this.root) this.root = null;
                // v is root, making root null
                else {
                    if (uvBlack) {
                        // u and v both black
                        // v is leaf, fix double black at v
                        this.fixDoubleBlack(v);
                    } else {
                        // u or v is red
                        if (v.sibling()) {
                            // sibling is not null, make it red"
                            v.sibling()!.color = 0;
                        }
                    }
                    // delete v from the tree
                    if (v.isOnLeft()) parent.left = null;
                    else parent.right = null;
                }
                return;
            }
    
            if (!v.left || !v.right) {
                // v has 1 child
                if (v === this.root) {
                    // v is root, assign the value of u to v, and delete u
                    v.data = u.data;
                    v.left = v.right = null;
                } else {
                    // Detach v from tree and move u up
                    if (v.isOnLeft()) parent.left = u;
                    else parent.right = u;
                    u.parent = parent;
                    if (uvBlack) this.fixDoubleBlack(u);
                    // u and v both black, fix double black at u
                    else u.color = 1; // u or v red, color u black
                }
                return;
            }
    
            // v has 2 children, swap data with successor and recurse
            this.swapData(u, v);
            this.deleteNode(u);
    
            // find node that replaces a deleted node in BST
            function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
                // when node have 2 children
                if (x.left && x.right) return successor(x.right);
                // when leaf
                if (!x.left && !x.right) return null;
                // when single child
                return x.left ?? x.right;
            }
            // find node that do not have a left child
            // in the subtree of the given node
            function successor(x: RBTreeNode<T>): RBTreeNode<T> {
                let temp = x;
                while (temp.left) temp = temp.left;
                return temp;
            }
        }
    
        fixDoubleBlack(x: RBTreeNode<T>): void {
            if (x === this.root) return; // Reached root
    
            const sibling = x.sibling();
            const parent = x.parent!;
            if (!sibling) {
                // No sibiling, double black pushed up
                this.fixDoubleBlack(parent);
            } else {
                if (sibling.color === 0) {
                    // Sibling red
                    parent.color = 0;
                    sibling.color = 1;
                    if (sibling.isOnLeft()) this.rotateRight(parent);
                    // left case
                    else this.rotateLeft(parent); // right case
                    this.fixDoubleBlack(x);
                } else {
                    // Sibling black
                    if (sibling.hasRedChild()) {
                        // at least 1 red children
                        if (sibling.left && sibling.left.color === 0) {
                            if (sibling.isOnLeft()) {
                                // left left
                                sibling.left.color = sibling.color;
                                sibling.color = parent.color;
                                this.rotateRight(parent);
                            } else {
                                // right left
                                sibling.left.color = parent.color;
                                this.rotateRight(sibling);
                                this.rotateLeft(parent);
                            }
                        } else {
                            if (sibling.isOnLeft()) {
                                // left right
                                sibling.right!.color = parent.color;
                                this.rotateLeft(sibling);
                                this.rotateRight(parent);
                            } else {
                                // right right
                                sibling.right!.color = sibling.color;
                                sibling.color = parent.color;
                                this.rotateLeft(parent);
                            }
                        }
                        parent.color = 1;
                    } else {
                        // 2 black children
                        sibling.color = 0;
                        if (parent.color === 1) this.fixDoubleBlack(parent);
                        else parent.color = 1;
                    }
                }
            }
        }
    
        insert(data: T): boolean {
            // search for a position to insert
            let parent = this.root;
            while (parent) {
                if (this.lt(data, parent.data)) {
                    if (!parent.left) break;
                    else parent = parent.left;
                } else if (this.lt(parent.data, data)) {
                    if (!parent.right) break;
                    else parent = parent.right;
                } else break;
            }
    
            // insert node into parent
            const node = new RBTreeNode(data);
            if (!parent) this.root = node;
            else if (this.lt(node.data, parent.data)) parent.left = node;
            else if (this.lt(parent.data, node.data)) parent.right = node;
            else {
                parent.count++;
                return false;
            }
            node.parent = parent;
            this.fixAfterInsert(node);
            return true;
        }
    
        find(data: T): RBTreeNode<T> | null {
            let p = this.root;
            while (p) {
                if (this.lt(data, p.data)) {
                    p = p.left;
                } else if (this.lt(p.data, data)) {
                    p = p.right;
                } else break;
            }
            return p ?? null;
        }
    
        *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
            if (!root) return;
            for (const v of this.inOrder(root.left!)) yield v;
            yield root.data;
            for (const v of this.inOrder(root.right!)) yield v;
        }
    
        *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
            if (!root) return;
            for (const v of this.reverseInOrder(root.right!)) yield v;
            yield root.data;
            for (const v of this.reverseInOrder(root.left!)) yield v;
        }
    }
    
    class TreeSet<T = number> {
        _size: number;
        tree: RBTree<T>;
        compare: Compare<T>;
        constructor(
            collection: T[] | Compare<T> = [],
            compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
        ) {
            if (typeof collection === 'function') {
                compare = collection;
                collection = [];
            }
            this._size = 0;
            this.compare = compare;
            this.tree = new RBTree(compare);
            for (const val of collection) this.add(val);
        }
    
        size(): number {
            return this._size;
        }
    
        has(val: T): boolean {
            return !!this.tree.find(val);
        }
    
        add(val: T): boolean {
            const successful = this.tree.insert(val);
            this._size += successful ? 1 : 0;
            return successful;
        }
    
        delete(val: T): boolean {
            const deleted = this.tree.deleteAll(val);
            this._size -= deleted ? 1 : 0;
            return deleted;
        }
    
        ceil(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(p.data, val) >= 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        floor(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(val, p.data) >= 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        higher(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(val, p.data) < 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        lower(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(p.data, val) < 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        first(): T | undefined {
            return this.tree.inOrder().next().value;
        }
    
        last(): T | undefined {
            return this.tree.reverseInOrder().next().value;
        }
    
        shift(): T | undefined {
            const first = this.first();
            if (first === undefined) return undefined;
            this.delete(first);
            return first;
        }
    
        pop(): T | undefined {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }
    
        *[Symbol.iterator](): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *keys(): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *values(): Generator<T, undefined, void> {
            for (const val of this.tree.inOrder()) yield val;
            return undefined;
        }
    
        /**
         * Return a generator for reverse order traversing the set
         */
        *rvalues(): Generator<T, undefined, void> {
            for (const val of this.tree.reverseInOrder()) yield val;
            return undefined;
        }
    }
    
    class TreeMultiSet<T = number> {
        _size: number;
        tree: RBTree<T>;
        compare: Compare<T>;
        constructor(
            collection: T[] | Compare<T> = [],
            compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
        ) {
            if (typeof collection === 'function') {
                compare = collection;
                collection = [];
            }
            this._size = 0;
            this.compare = compare;
            this.tree = new RBTree(compare);
            for (const val of collection) this.add(val);
        }
    
        size(): number {
            return this._size;
        }
    
        has(val: T): boolean {
            return !!this.tree.find(val);
        }
    
        add(val: T): boolean {
            const successful = this.tree.insert(val);
            this._size++;
            return successful;
        }
    
        delete(val: T): boolean {
            const successful = this.tree.delete(val);
            if (!successful) return false;
            this._size--;
            return true;
        }
    
        count(val: T): number {
            const node = this.tree.find(val);
            return node ? node.count : 0;
        }
    
        ceil(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(p.data, val) >= 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        floor(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(val, p.data) >= 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        higher(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(val, p.data) < 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        lower(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(p.data, val) < 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        first(): T | undefined {
            return this.tree.inOrder().next().value;
        }
    
        last(): T | undefined {
            return this.tree.reverseInOrder().next().value;
        }
    
        shift(): T | undefined {
            const first = this.first();
            if (first === undefined) return undefined;
            this.delete(first);
            return first;
        }
    
        pop(): T | undefined {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }
    
        *[Symbol.iterator](): Generator<T, void, void> {
            yield* this.values();
        }
    
        *keys(): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *values(): Generator<T, undefined, void> {
            for (const val of this.tree.inOrder()) {
                let count = this.count(val);
                while (count--) yield val;
            }
            return undefined;
        }
    
        /**
         * Return a generator for reverse order traversing the multi-set
         */
        *rvalues(): Generator<T, undefined, void> {
            for (const val of this.tree.reverseInOrder()) {
                let count = this.count(val);
                while (count--) yield val;
            }
            return undefined;
        }
    }
    
    /**
     * Your SmallestInfiniteSet object will be instantiated and called as such:
     * var obj = new SmallestInfiniteSet()
     * var param_1 = obj.popSmallest()
     * obj.addBack(num)
     */
    
    
  • use std::collections::BTreeSet;
    
    struct SmallestInfiniteSet {
        s: BTreeSet<i32>,
    }
    
    impl SmallestInfiniteSet {
        fn new() -> Self {
            let mut set = BTreeSet::new();
            for i in 1..=1000 {
                set.insert(i);
            }
            SmallestInfiniteSet { s: set }
        }
    
        fn pop_smallest(&mut self) -> i32 {
            let x = *self.s.iter().next().unwrap();
            self.s.remove(&x);
            x
        }
    
        fn add_back(&mut self, num: i32) {
            self.s.insert(num);
        }
    }/**
     * Your SmallestInfiniteSet object will be instantiated and called as such:
     * let obj = SmallestInfiniteSet::new();
     * let ret_1: i32 = obj.pop_smallest();
     * obj.add_back(num);
     */
    
    

All Problems

All Solutions