Welcome to Subscribe On Youtube

2310. Sum of Numbers With Units Digit K

Description

Given two integers num and k, consider a set of positive integers with the following properties:

  • The units digit of each integer is k.
  • The sum of the integers is num.

Return the minimum possible size of such a set, or -1 if no such set exists.

Note:

  • The set can contain multiple instances of the same integer, and the sum of an empty set is considered 0.
  • The units digit of a number is the rightmost digit of the number.

 

Example 1:

Input: num = 58, k = 9
Output: 2
Explanation:
One valid set is [9,49], as the sum is 58 and each integer has a units digit of 9.
Another valid set is [19,39].
It can be shown that 2 is the minimum possible size of a valid set.

Example 2:

Input: num = 37, k = 2
Output: -1
Explanation: It is not possible to obtain a sum of 37 using only integers that have a units digit of 2.

Example 3:

Input: num = 0, k = 7
Output: 0
Explanation: The sum of an empty set is considered 0.

 

Constraints:

  • 0 <= num <= 3000
  • 0 <= k <= 9

Solutions

  • class Solution {
        public int minimumNumbers(int num, int k) {
            if (num == 0) {
                return 0;
            }
            for (int i = 1; i <= num; ++i) {
                int t = num - k * i;
                if (t >= 0 && t % 10 == 0) {
                    return i;
                }
            }
            return -1;
        }
    }
    
  • class Solution {
    public:
        int minimumNumbers(int num, int k) {
            if (num == 0) return 0;
            for (int i = 1; i <= num; ++i) {
                int t = num - k * i;
                if (t >= 0 && t % 10 == 0) return i;
            }
            return -1;
        }
    };
    
  • class Solution:
        def minimumNumbers(self, num: int, k: int) -> int:
            if num == 0:
                return 0
            for i in range(1, num + 1):
                if (t := num - k * i) >= 0 and t % 10 == 0:
                    return i
            return -1
    
    
  • func minimumNumbers(num int, k int) int {
    	if num == 0 {
    		return 0
    	}
    	for i := 1; i <= num; i++ {
    		t := num - k*i
    		if t >= 0 && t%10 == 0 {
    			return i
    		}
    	}
    	return -1
    }
    
  • function minimumNumbers(num: number, k: number): number {
        if (!num) return 0;
        let digit = num % 10;
        for (let i = 1; i < 11; i++) {
            let target = i * k;
            if (target <= num && target % 10 == digit) return i;
        }
        return -1;
    }
    
    

All Problems

All Solutions