Welcome to Subscribe On Youtube
2310. Sum of Numbers With Units Digit K
Description
Given two integers num
and k
, consider a set of positive integers with the following properties:
- The units digit of each integer is
k
. - The sum of the integers is
num
.
Return the minimum possible size of such a set, or -1
if no such set exists.
Note:
- The set can contain multiple instances of the same integer, and the sum of an empty set is considered
0
. - The units digit of a number is the rightmost digit of the number.
Example 1:
Input: num = 58, k = 9 Output: 2 Explanation: One valid set is [9,49], as the sum is 58 and each integer has a units digit of 9. Another valid set is [19,39]. It can be shown that 2 is the minimum possible size of a valid set.
Example 2:
Input: num = 37, k = 2 Output: -1 Explanation: It is not possible to obtain a sum of 37 using only integers that have a units digit of 2.
Example 3:
Input: num = 0, k = 7 Output: 0 Explanation: The sum of an empty set is considered 0.
Constraints:
0 <= num <= 3000
0 <= k <= 9
Solutions
-
class Solution { public int minimumNumbers(int num, int k) { if (num == 0) { return 0; } for (int i = 1; i <= num; ++i) { int t = num - k * i; if (t >= 0 && t % 10 == 0) { return i; } } return -1; } }
-
class Solution { public: int minimumNumbers(int num, int k) { if (num == 0) return 0; for (int i = 1; i <= num; ++i) { int t = num - k * i; if (t >= 0 && t % 10 == 0) return i; } return -1; } };
-
class Solution: def minimumNumbers(self, num: int, k: int) -> int: if num == 0: return 0 for i in range(1, num + 1): if (t := num - k * i) >= 0 and t % 10 == 0: return i return -1
-
func minimumNumbers(num int, k int) int { if num == 0 { return 0 } for i := 1; i <= num; i++ { t := num - k*i if t >= 0 && t%10 == 0 { return i } } return -1 }
-
function minimumNumbers(num: number, k: number): number { if (!num) return 0; let digit = num % 10; for (let i = 1; i < 11; i++) { let target = i * k; if (target <= num && target % 10 == digit) return i; } return -1; }