Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2134.html

2134. Minimum Swaps to Group All 1’s Together II

  • Difficulty: Medium.
  • Related Topics: Array, Sliding Window.
  • Similar Questions: Minimum Swaps to Group All 1’s Together, Time Needed to Rearrange a Binary String.

Problem

A swap is defined as taking two distinct positions in an array and swapping the values in them.

A circular array is defined as an array where we consider the first element and the last element to be adjacent.

Given a binary circular array nums, return the minimum number of swaps required to group all **1’s present in the array together at any location**.

  Example 1:

Input: nums = [0,1,0,1,1,0,0]
Output: 1
Explanation: Here are a few of the ways to group all the 1's together:
[0,0,1,1,1,0,0] using 1 swap.
[0,1,1,1,0,0,0] using 1 swap.
[1,1,0,0,0,0,1] using 2 swaps (using the circular property of the array).
There is no way to group all 1's together with 0 swaps.
Thus, the minimum number of swaps required is 1.

Example 2:

Input: nums = [0,1,1,1,0,0,1,1,0]
Output: 2
Explanation: Here are a few of the ways to group all the 1's together:
[1,1,1,0,0,0,0,1,1] using 2 swaps (using the circular property of the array).
[1,1,1,1,1,0,0,0,0] using 2 swaps.
There is no way to group all 1's together with 0 or 1 swaps.
Thus, the minimum number of swaps required is 2.

Example 3:

Input: nums = [1,1,0,0,1]
Output: 0
Explanation: All the 1's are already grouped together due to the circular property of the array.
Thus, the minimum number of swaps required is 0.

  Constraints:

  • 1 <= nums.length <= 105

  • nums[i] is either 0 or 1.

Solution (Java, C++, Python)

  • class Solution {
        public int minSwaps(int[] nums) {
            int l = nums.length;
            int[] ones = new int[l];
            ones[0] = nums[0] == 1 ? 1 : 0;
            for (int i = 1; i < l; i++) {
                if (nums[i] == 1) {
                    ones[i] = ones[i - 1] + 1;
                } else {
                    ones[i] = ones[i - 1];
                }
            }
            if (ones[l - 1] == l || ones[l - 1] == 0) {
                return 0;
            }
            int ws = ones[l - 1];
            int minSwaps = Integer.MAX_VALUE;
            int si = 0;
            int ei;
            while (si < nums.length) {
                ei = (si + ws - 1) % l;
                int totalones;
                if (ei >= si) {
                    totalones = ones[ei] - (si == 0 ? 0 : ones[si - 1]);
                } else {
                    totalones = ones[ei] + (ones[l - 1] - ones[si - 1]);
                }
                int swapsreq = ws - totalones;
                if (swapsreq < minSwaps) {
                    minSwaps = swapsreq;
                }
                si++;
            }
            return minSwaps;
        }
    }
    
  • Todo
    
  • class Solution:
        def minSwaps(self, nums: List[int]) -> int:
            cnt = nums.count(1)
            n = len(nums)
            s = [0] * ((n << 1) + 1)
            for i in range(n << 1):
                s[i + 1] = s[i] + nums[i % n]
            mx = 0
            for i in range(n << 1):
                j = i + cnt - 1
                if j < (n << 1):
                    mx = max(mx, s[j + 1] - s[i])
            return cnt - mx
    
    ############
    
    # 2134. Minimum Swaps to Group All 1's Together II
    # https://leetcode.com/problems/minimum-swaps-to-group-all-1s-together-ii/
    
    class Solution:
        def minSwaps(self, nums: List[int]) -> int:
            n = len(nums)
            ones = nums.count(1)
            
            nums = nums + nums
            maxCount = 0
            
            prefix = [0]
            for x in nums:
                prefix.append(prefix[-1] + x)
            
            for i in range(n):
                maxCount = max(maxCount, prefix[i + ones] - prefix[i])
            
            return ones - maxCount
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions