Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2132.html

2132. Stamping the Grid

  • Difficulty: Hard.
  • Related Topics: Array, Greedy, Matrix, Prefix Sum.
  • Similar Questions: Maximal Square, Bomb Enemy, Matrix Block Sum.

Problem

You are given an m x n binary matrix grid where each cell is either 0 (empty) or 1 (occupied).

You are then given stamps of size stampHeight x stampWidth. We want to fit the stamps such that they follow the given restrictions and requirements:

  • Cover all the empty cells.

  • Do not cover any of the occupied cells.

  • We can put as many stamps as we want.

  • Stamps can overlap with each other.

  • Stamps are not allowed to be rotated.

  • Stamps must stay completely inside the grid.

Return true if it is possible to fit the stamps while following the given restrictions and requirements. Otherwise, return false.

  Example 1:

Input: grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3
Output: true
Explanation: We have two overlapping stamps (labeled 1 and 2 in the image) that are able to cover all the empty cells.

Example 2:

Input: grid = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], stampHeight = 2, stampWidth = 2 
Output: false 
Explanation: There is no way to fit the stamps onto all the empty cells without the stamps going outside the grid.

  Constraints:

  • m == grid.length

  • n == grid[r].length

  • 1 <= m, n <= 105

  • 1 <= m * n <= 2 * 105

  • grid[r][c] is either 0 or 1.

  • 1 <= stampHeight, stampWidth <= 105

Solution

  • class Solution {
        private boolean canPaved(int[][] grid, int is, int js, int ie, int je) {
            for (int i = is; i <= ie; i++) {
                for (int j = js; j <= je; j++) {
                    if (grid[i][j] == 1) {
                        return true;
                    }
                }
            }
            return false;
        }
    
        public boolean possibleToStamp(int[][] grid, int h, int w) {
            int rl = grid[0].length;
            for (int i = 0; i < grid.length; i++) {
                int[] row = grid[i];
                int prev = -1;
                for (int j = 0; j < row.length; j++) {
                    if (row[j] == 0) {
                        if (j + 1 < rl
                                && row[j + 1] == 1
                                && j - w + 1 >= 0
                                && i + 1 < grid.length
                                && grid[i + 1][j] == 1
                                && i - h + 1 >= 0
                                && canPaved(grid, i - h + 1, j - w + 1, i, j)) {
                            return false;
                        }
                        continue;
                    }
                    if (1 < j - prev && j - prev <= w) {
                        return false;
                    }
                    prev = j;
                }
                if (1 < row.length - prev && row.length - prev <= w) {
                    return false;
                }
            }
            for (int i = 0; i < rl; i++) {
                int prev = -1;
                for (int j = 0; j < grid.length; j++) {
                    if (grid[j][i] == 0) {
                        continue;
                    }
                    if (1 < j - prev && j - prev <= h) {
                        return false;
                    }
                    prev = j;
                }
                if (1 < grid.length - prev && grid.length - prev <= h) {
                    return false;
                }
            }
            return true;
        }
    }
    
    ############
    
    class Solution {
        public boolean possibleToStamp(int[][] grid, int stampHeight, int stampWidth) {
            int m = grid.length, n = grid[0].length;
            int[][] s = new int[m + 1][n + 1];
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] - s[i][j] + grid[i][j];
                }
            }
            int[][] d = new int[m + 1][n + 1];
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == 0) {
                        int x = i + stampHeight, y = j + stampWidth;
                        if (x <= m && y <= n && s[x][y] - s[x][j] - s[i][y] + s[i][j] == 0) {
                            d[i][j]++;
                            d[i][y]--;
                            d[x][j]--;
                            d[x][y]++;
                        }
                    }
                }
            }
            int[][] cnt = new int[m + 1][n + 1];
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    cnt[i + 1][j + 1] = cnt[i + 1][j] + cnt[i][j + 1] - cnt[i][j] + d[i][j];
                    if (grid[i][j] == 0 && cnt[i + 1][j + 1] == 0) {
                        return false;
                    }
                }
            }
            return true;
        }
    }
    
  • class Solution:
        def possibleToStamp(
            self, grid: List[List[int]], stampHeight: int, stampWidth: int
        ) -> bool:
            m, n = len(grid), len(grid[0])
            s = [[0] * (n + 1) for _ in range(m + 1)]
            for i, row in enumerate(grid):
                for j, v in enumerate(row):
                    s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] - s[i][j] + v
    
            d = [[0] * (n + 1) for _ in range(m + 1)]
            for i, row in enumerate(grid):
                for j, v in enumerate(row):
                    if v == 0:
                        x, y = i + stampHeight, j + stampWidth
                        if x <= m and y <= n and s[x][y] - s[x][j] - s[i][y] + s[i][j] == 0:
                            d[i][j] += 1
                            d[i][y] -= 1
                            d[x][j] -= 1
                            d[x][y] += 1
    
            cnt = [[0] * (n + 1) for _ in range(m + 1)]
            for i, row in enumerate(grid):
                for j, v in enumerate(row):
                    cnt[i + 1][j + 1] = cnt[i + 1][j] + cnt[i][j + 1] - cnt[i][j] + d[i][j]
                    if v == 0 and cnt[i + 1][j + 1] == 0:
                        return False
            return True
    
    ############
    
    # 2132. Stamping the Grid
    # https://leetcode.com/problems/stamping-the-grid/
    
    class Solution:
        def possibleToStamp(self, grid: List[List[int]], H: int, W: int) -> bool:
            rows, cols = len(grid), len(grid[0])
            prefix = [[0] * (cols + 1) for _ in range(rows + 1)]
    
            for x in range(rows):
                for y in range(cols):
                    prefix[x + 1][y + 1] = prefix[x + 1][y] + prefix[x][y + 1] - prefix[x][y] + grid[x][y]
    
            diff = [[0] * (cols + 1) for _ in range(rows + 1)]
            
            for x in range(rows - H + 1):
                for y in range(cols - W + 1):
                    rect = prefix[x + H][y + W] - prefix[x + H][y] - prefix[x][y + W] + prefix[x][y]
    
                    if rect == 0:
                        diff[x][y] += 1
                        diff[x + H][y] -= 1
                        diff[x][y + W] -= 1
                        diff[x + H][y + W] += 1
    
            for x in range(rows + 1):
                for y in range(cols):
                    diff[x][y + 1] += diff[x][y]
            
            for y in range(cols + 1):
                for x in range(rows):
                    diff[x + 1][y] += diff[x][y]
            
            for x in range(rows):
                for y in range(cols):
                    if grid[x][y] == 0 and diff[x][y] == 0:
                        return False
            
            return True
                        
    
    
    
  • class Solution {
    public:
        bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
            int m = grid.size(), n = grid[0].size();
            vector<vector<int>> s(m + 1, vector<int>(n + 1));
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] - s[i][j] + grid[i][j];
                }
            }
            vector<vector<int>> d(m + 1, vector<int>(n + 1));
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j]) continue;
                    int x = i + stampHeight, y = j + stampWidth;
                    if (x <= m && y <= n && s[x][y] - s[i][y] - s[x][j] + s[i][j] == 0) {
                        d[i][j]++;
                        d[x][j]--;
                        d[i][y]--;
                        d[x][y]++;
                    }
                }
            }
            vector<vector<int>> cnt(m + 1, vector<int>(n + 1));
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    cnt[i + 1][j + 1] = cnt[i + 1][j] + cnt[i][j + 1] - cnt[i][j] + d[i][j];
                    if (grid[i][j] == 0 && cnt[i + 1][j + 1] == 0) return false;
                }
            }
            return true;
        }
    };
    
  • func possibleToStamp(grid [][]int, stampHeight int, stampWidth int) bool {
    	m, n := len(grid), len(grid[0])
    	s := make([][]int, m+1)
    	d := make([][]int, m+1)
    	cnt := make([][]int, m+1)
    	for i := range s {
    		s[i] = make([]int, n+1)
    		d[i] = make([]int, n+1)
    		cnt[i] = make([]int, n+1)
    	}
    	for i, row := range grid {
    		for j, v := range row {
    			s[i+1][j+1] = s[i+1][j] + s[i][j+1] - s[i][j] + v
    		}
    	}
    	for i, row := range grid {
    		for j, v := range row {
    			if v == 0 {
    				x, y := i+stampHeight, j+stampWidth
    				if x <= m && y <= n && s[x][y]-s[i][y]-s[x][j]+s[i][j] == 0 {
    					d[i][j]++
    					d[i][y]--
    					d[x][j]--
    					d[x][y]++
    				}
    			}
    		}
    	}
    	for i, row := range grid {
    		for j, v := range row {
    			cnt[i+1][j+1] = cnt[i+1][j] + cnt[i][j+1] - cnt[i][j] + d[i][j]
    			if v == 0 && cnt[i+1][j+1] == 0 {
    				return false
    			}
    		}
    	}
    	return true
    }
    
  • /**
     * @param {number[][]} grid
     * @param {number} stampHeight
     * @param {number} stampWidth
     * @return {boolean}
     */
    var possibleToStamp = function (grid, stampHeight, stampWidth) {
        const m = grid.length;
        const n = grid[0].length;
        let s = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
        let d = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
        let cnt = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] - s[i][j] + grid[i][j];
            }
        }
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                if (grid[i][j] == 0) {
                    let [x, y] = [i + stampHeight, j + stampWidth];
                    if (
                        x <= m &&
                        y <= n &&
                        s[x][y] - s[i][y] - s[x][j] + s[i][j] == 0
                    ) {
                        d[i][j]++;
                        d[i][y]--;
                        d[x][j]--;
                        d[x][y]++;
                    }
                }
            }
        }
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                cnt[i + 1][j + 1] =
                    cnt[i + 1][j] + cnt[i][j + 1] - cnt[i][j] + d[i][j];
                if (grid[i][j] == 0 && cnt[i + 1][j + 1] == 0) {
                    return false;
                }
            }
        }
        return true;
    };
    
    
  • impl Solution {
        pub fn possible_to_stamp(grid: Vec<Vec<i32>>, stamp_height: i32, stamp_width: i32) -> bool {
            let n: usize = grid.len();
            let m: usize = grid[0].len();
    
            let mut prefix_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
    
            // Initialize the prefix vector
            for i in 0..n {
                for j in 0..m {
                    prefix_vec[i + 1][j + 1] = prefix_vec[i][j + 1] + prefix_vec[i + 1][j] - prefix_vec[i][j] + grid[i][j];
                }
            } 
    
            let mut diff_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
    
            // Construct the difference vector based on prefix sum vector
            for i in 0..n {
                for j in 0..m {
                    // If the value of the cell is one, just bypass this
                    if grid[i][j] == 1 {
                        continue;
                    }
                    // Otherwise, try stick the stamp
                    let x: usize = i + stamp_height as usize;
                    let y: usize = j + stamp_width as usize;
                    // Check the bound
                    if x <= n && y <= m {
                        // If the region can be sticked (All cells are empty, which means the sum will be zero)
                        if prefix_vec[x][y] - prefix_vec[x][j] - prefix_vec[i][y] + prefix_vec[i][j] == 0 {
                            // Update the difference vector
                            diff_vec[i][j] += 1;
                            diff_vec[x][y] += 1;
    
                            diff_vec[x][j] -= 1;
                            diff_vec[i][y] -= 1;
                        }
                    }
                }
            }
    
            let mut check_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
    
            // Check the prefix sum of difference vector, to determine if there is any empty cell left
            for i in 0..n {
                for j in 0..m {
                    // If the value of the cell is one, just bypass this
                    if grid[i][j] == 1 {
                        continue;
                    }
                    // Otherwise, check if the region is empty, by calculating the prefix sum of difference vector
                    check_vec[i + 1][j + 1] = check_vec[i][j + 1] + check_vec[i + 1][j] - check_vec[i][j] + diff_vec[i][j];
                    if check_vec[i + 1][j + 1] == 0 {
                        return false;
                    }
                }
            }
    
            true
        }
    }
    
  • function possibleToStamp(grid: number[][], stampHeight: number, stampWidth: number): boolean {
        const m = grid.length;
        const n = grid[0].length;
        const s: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
        for (let i = 1; i <= m; ++i) {
            for (let j = 1; j <= n; ++j) {
                s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
            }
        }
    
        const d: number[][] = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
        for (let i = 1; i + stampHeight - 1 <= m; ++i) {
            for (let j = 1; j + stampWidth - 1 <= n; ++j) {
                const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
                if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
                    d[i][j]++;
                    d[i][y + 1]--;
                    d[x + 1][j]--;
                    d[x + 1][y + 1]++;
                }
            }
        }
    
        for (let i = 1; i <= m; ++i) {
            for (let j = 1; j <= n; ++j) {
                d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
                if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
                    return false;
                }
            }
        }
        return true;
    }
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions