Welcome to Subscribe On Youtube

2218. Maximum Value of K Coins From Piles

Description

There are n piles of coins on a table. Each pile consists of a positive number of coins of assorted denominations.

In one move, you can choose any coin on top of any pile, remove it, and add it to your wallet.

Given a list piles, where piles[i] is a list of integers denoting the composition of the ith pile from top to bottom, and a positive integer k, return the maximum total value of coins you can have in your wallet if you choose exactly k coins optimally.

 

Example 1:

Input: piles = [[1,100,3],[7,8,9]], k = 2
Output: 101
Explanation:
The above diagram shows the different ways we can choose k coins.
The maximum total we can obtain is 101.

Example 2:

Input: piles = [[100],[100],[100],[100],[100],[100],[1,1,1,1,1,1,700]], k = 7
Output: 706
Explanation:
The maximum total can be obtained if we choose all coins from the last pile.

 

Constraints:

  • n == piles.length
  • 1 <= n <= 1000
  • 1 <= piles[i][j] <= 105
  • 1 <= k <= sum(piles[i].length) <= 2000

Solutions

  • class Solution {
        public int maxValueOfCoins(List<List<Integer>> piles, int k) {
            int n = piles.size();
            List<int[]> presum = new ArrayList<>();
            for (List<Integer> p : piles) {
                int m = p.size();
                int[] s = new int[m + 1];
                for (int i = 0; i < m; ++i) {
                    s[i + 1] = s[i] + p.get(i);
                }
                presum.add(s);
            }
            int[] dp = new int[k + 1];
            for (int[] s : presum) {
                for (int j = k; j >= 0; --j) {
                    for (int idx = 0; idx < s.length; ++idx) {
                        if (j >= idx) {
                            dp[j] = Math.max(dp[j], dp[j - idx] + s[idx]);
                        }
                    }
                }
            }
            return dp[k];
        }
    }
    
  • class Solution {
    public:
        int maxValueOfCoins(vector<vector<int>>& piles, int k) {
            vector<vector<int>> presum;
            for (auto& p : piles) {
                int m = p.size();
                vector<int> s(m + 1);
                for (int i = 0; i < m; ++i) s[i + 1] = s[i] + p[i];
                presum.push_back(s);
            }
            vector<int> dp(k + 1);
            for (auto& s : presum) {
                for (int j = k; ~j; --j) {
                    for (int idx = 0; idx < s.size(); ++idx) {
                        if (j >= idx) dp[j] = max(dp[j], dp[j - idx] + s[idx]);
                    }
                }
            }
            return dp[k];
        }
    };
    
  • class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], k: int) -> int:
            presum = [list(accumulate(p, initial=0)) for p in piles]
            n = len(piles)
            dp = [[0] * (k + 1) for _ in range(n + 1)]
            for i, s in enumerate(presum, 1):
                for j in range(k + 1):
                    for idx, v in enumerate(s):
                        if j >= idx:
                            dp[i][j] = max(dp[i][j], dp[i - 1][j - idx] + v)
            return dp[-1][-1]
    
    
  • func maxValueOfCoins(piles [][]int, k int) int {
    	var presum [][]int
    	for _, p := range piles {
    		m := len(p)
    		s := make([]int, m+1)
    		for i, v := range p {
    			s[i+1] = s[i] + v
    		}
    		presum = append(presum, s)
    	}
    	dp := make([]int, k+1)
    	for _, s := range presum {
    		for j := k; j >= 0; j-- {
    			for idx, v := range s {
    				if j >= idx {
    					dp[j] = max(dp[j], dp[j-idx]+v)
    				}
    			}
    		}
    	}
    	return dp[k]
    }
    

All Problems

All Solutions