Welcome to Subscribe On Youtube

2179. Count Good Triplets in an Array

Description

You are given two 0-indexed arrays nums1 and nums2 of length n, both of which are permutations of [0, 1, ..., n - 1].

A good triplet is a set of 3 distinct values which are present in increasing order by position both in nums1 and nums2. In other words, if we consider pos1v as the index of the value v in nums1 and pos2v as the index of the value v in nums2, then a good triplet will be a set (x, y, z) where 0 <= x, y, z <= n - 1, such that pos1x < pos1y < pos1z and pos2x < pos2y < pos2z.

Return the total number of good triplets.

 

Example 1:

Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3]
Output: 1
Explanation: 
There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3). 
Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.

Example 2:

Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
Output: 4
Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).

 

Constraints:

  • n == nums1.length == nums2.length
  • 3 <= n <= 105
  • 0 <= nums1[i], nums2[i] <= n - 1
  • nums1 and nums2 are permutations of [0, 1, ..., n - 1].

Solutions

Binary Indexed Tree or Segment Tree.

  • class Solution {
        public long goodTriplets(int[] nums1, int[] nums2) {
            int n = nums1.length;
            int[] pos = new int[n];
            BinaryIndexedTree tree = new BinaryIndexedTree(n);
            for (int i = 0; i < n; ++i) {
                pos[nums2[i]] = i + 1;
            }
            long ans = 0;
            for (int num : nums1) {
                int p = pos[num];
                long left = tree.query(p);
                long right = n - p - (tree.query(n) - tree.query(p));
                ans += left * right;
                tree.update(p, 1);
            }
            return ans;
        }
    }
    
    class BinaryIndexedTree {
        private int n;
        private int[] c;
    
        public BinaryIndexedTree(int n) {
            this.n = n;
            c = new int[n + 1];
        }
    
        public void update(int x, int delta) {
            while (x <= n) {
                c[x] += delta;
                x += lowbit(x);
            }
        }
    
        public int query(int x) {
            int s = 0;
            while (x > 0) {
                s += c[x];
                x -= lowbit(x);
            }
            return s;
        }
    
        public static int lowbit(int x) {
            return x & -x;
        }
    }
    
  • class BinaryIndexedTree {
    public:
        int n;
        vector<int> c;
    
        BinaryIndexedTree(int _n)
            : n(_n)
            , c(_n + 1) {}
    
        void update(int x, int delta) {
            while (x <= n) {
                c[x] += delta;
                x += lowbit(x);
            }
        }
    
        int query(int x) {
            int s = 0;
            while (x > 0) {
                s += c[x];
                x -= lowbit(x);
            }
            return s;
        }
    
        int lowbit(int x) {
            return x & -x;
        }
    };
    
    class Solution {
    public:
        long long goodTriplets(vector<int>& nums1, vector<int>& nums2) {
            int n = nums1.size();
            vector<int> pos(n);
            for (int i = 0; i < n; ++i) pos[nums2[i]] = i + 1;
            BinaryIndexedTree* tree = new BinaryIndexedTree(n);
            long long ans = 0;
            for (int& num : nums1) {
                int p = pos[num];
                int left = tree->query(p);
                int right = n - p - (tree->query(n) - tree->query(p));
                ans += 1ll * left * right;
                tree->update(p, 1);
            }
            return ans;
        }
    };
    
  • class BinaryIndexedTree:
        def __init__(self, n):
            self.n = n
            self.c = [0] * (n + 1)
    
        @staticmethod
        def lowbit(x):
            return x & -x
    
        def update(self, x, delta):
            while x <= self.n:
                self.c[x] += delta
                x += BinaryIndexedTree.lowbit(x)
    
        def query(self, x):
            s = 0
            while x > 0:
                s += self.c[x]
                x -= BinaryIndexedTree.lowbit(x)
            return s
    
    
    class Solution:
        def goodTriplets(self, nums1: List[int], nums2: List[int]) -> int:
            pos = {v: i for i, v in enumerate(nums2, 1)}
            ans = 0
            n = len(nums1)
            tree = BinaryIndexedTree(n)
            for num in nums1:
                p = pos[num]
                left = tree.query(p)
                right = n - p - (tree.query(n) - tree.query(p))
                ans += left * right
                tree.update(p, 1)
            return ans
    
    
  • type BinaryIndexedTree struct {
    	n int
    	c []int
    }
    
    func newBinaryIndexedTree(n int) *BinaryIndexedTree {
    	c := make([]int, n+1)
    	return &BinaryIndexedTree{n, c}
    }
    
    func (this *BinaryIndexedTree) lowbit(x int) int {
    	return x & -x
    }
    
    func (this *BinaryIndexedTree) update(x, delta int) {
    	for x <= this.n {
    		this.c[x] += delta
    		x += this.lowbit(x)
    	}
    }
    
    func (this *BinaryIndexedTree) query(x int) int {
    	s := 0
    	for x > 0 {
    		s += this.c[x]
    		x -= this.lowbit(x)
    	}
    	return s
    }
    
    func goodTriplets(nums1 []int, nums2 []int) int64 {
    	n := len(nums1)
    	pos := make([]int, n)
    	for i, v := range nums2 {
    		pos[v] = i + 1
    	}
    	tree := newBinaryIndexedTree(n)
    	var ans int64
    	for _, num := range nums1 {
    		p := pos[num]
    		left := tree.query(p)
    		right := n - p - (tree.query(n) - tree.query(p))
    		ans += int64(left) * int64(right)
    		tree.update(p, 1)
    	}
    	return ans
    }
    

All Problems

All Solutions