Welcome to Subscribe On Youtube
2172. Maximum AND Sum of Array
Description
You are given an integer array nums
of length n
and an integer numSlots
such that 2 * numSlots >= n
. There are numSlots
slots numbered from 1
to numSlots
.
You have to place all n
integers into the slots such that each slot contains at most two numbers. The AND sum of a given placement is the sum of the bitwise AND
of every number with its respective slot number.
- For example, the AND sum of placing the numbers
[1, 3]
into slot1
and[4, 6]
into slot2
is equal to(1 AND 1) + (3 AND 1) + (4 AND 2) + (6 AND 2) = 1 + 1 + 0 + 2 = 4
.
Return the maximum possible AND sum of nums
given numSlots
slots.
Example 1:
Input: nums = [1,2,3,4,5,6], numSlots = 3 Output: 9 Explanation: One possible placement is [1, 4] into slot 1, [2, 6] into slot 2, and [3, 5] into slot 3. This gives the maximum AND sum of (1 AND 1) + (4 AND 1) + (2 AND 2) + (6 AND 2) + (3 AND 3) + (5 AND 3) = 1 + 0 + 2 + 2 + 3 + 1 = 9.
Example 2:
Input: nums = [1,3,10,4,7,1], numSlots = 9 Output: 24 Explanation: One possible placement is [1, 1] into slot 1, [3] into slot 3, [4] into slot 4, [7] into slot 7, and [10] into slot 9. This gives the maximum AND sum of (1 AND 1) + (1 AND 1) + (3 AND 3) + (4 AND 4) + (7 AND 7) + (10 AND 9) = 1 + 1 + 3 + 4 + 7 + 8 = 24. Note that slots 2, 5, 6, and 8 are empty which is permitted.
Constraints:
n == nums.length
1 <= numSlots <= 9
1 <= n <= 2 * numSlots
1 <= nums[i] <= 15
Solutions
-
class Solution { public int maximumANDSum(int[] nums, int numSlots) { int n = nums.length; int m = numSlots << 1; int[] f = new int[1 << m]; int ans = 0; for (int i = 0; i < 1 << m; ++i) { int cnt = Integer.bitCount(i); if (cnt > n) { continue; } for (int j = 0; j < m; ++j) { if ((i >> j & 1) == 1) { f[i] = Math.max(f[i], f[i ^ (1 << j)] + (nums[cnt - 1] & (j / 2 + 1))); } } ans = Math.max(ans, f[i]); } return ans; } }
-
class Solution { public: int maximumANDSum(vector<int>& nums, int numSlots) { int n = nums.size(); int m = numSlots << 1; int f[1 << m]; memset(f, 0, sizeof(f)); for (int i = 0; i < 1 << m; ++i) { int cnt = __builtin_popcount(i); if (cnt > n) { continue; } for (int j = 0; j < m; ++j) { if (i >> j & 1) { f[i] = max(f[i], f[i ^ (1 << j)] + (nums[cnt - 1] & (j / 2 + 1))); } } } return *max_element(f, f + (1 << m)); } };
-
class Solution: def maximumANDSum(self, nums: List[int], numSlots: int) -> int: n = len(nums) m = numSlots << 1 f = [0] * (1 << m) for i in range(1 << m): cnt = i.bit_count() if cnt > n: continue for j in range(m): if i >> j & 1: f[i] = max(f[i], f[i ^ (1 << j)] + (nums[cnt - 1] & (j // 2 + 1))) return max(f)
-
func maximumANDSum(nums []int, numSlots int) int { n := len(nums) m := numSlots << 1 f := make([]int, 1<<m) for i := range f { cnt := bits.OnesCount(uint(i)) if cnt > n { continue } for j := 0; j < m; j++ { if i>>j&1 == 1 { f[i] = max(f[i], f[i^(1<<j)]+(nums[cnt-1]&(j/2+1))) } } } return slices.Max(f) }
-
function maximumANDSum(nums: number[], numSlots: number): number { const n = nums.length; const m = numSlots << 1; const f: number[] = new Array(1 << m).fill(0); for (let i = 0; i < 1 << m; ++i) { const cnt = i .toString(2) .split('') .filter(c => c === '1').length; if (cnt > n) { continue; } for (let j = 0; j < m; ++j) { if (((i >> j) & 1) === 1) { f[i] = Math.max(f[i], f[i ^ (1 << j)] + (nums[cnt - 1] & ((j >> 1) + 1))); } } } return Math.max(...f); }