Welcome to Subscribe On Youtube

2163. Minimum Difference in Sums After Removal of Elements

Description

You are given a 0-indexed integer array nums consisting of 3 * n elements.

You are allowed to remove any subsequence of elements of size exactly n from nums. The remaining 2 * n elements will be divided into two equal parts:

  • The first n elements belonging to the first part and their sum is sumfirst.
  • The next n elements belonging to the second part and their sum is sumsecond.

The difference in sums of the two parts is denoted as sumfirst - sumsecond.

  • For example, if sumfirst = 3 and sumsecond = 2, their difference is 1.
  • Similarly, if sumfirst = 2 and sumsecond = 3, their difference is -1.

Return the minimum difference possible between the sums of the two parts after the removal of n elements.

 

Example 1:

Input: nums = [3,1,2]
Output: -1
Explanation: Here, nums has 3 elements, so n = 1. 
Thus we have to remove 1 element from nums and divide the array into two equal parts.
- If we remove nums[0] = 3, the array will be [1,2]. The difference in sums of the two parts will be 1 - 2 = -1.
- If we remove nums[1] = 1, the array will be [3,2]. The difference in sums of the two parts will be 3 - 2 = 1.
- If we remove nums[2] = 2, the array will be [3,1]. The difference in sums of the two parts will be 3 - 1 = 2.
The minimum difference between sums of the two parts is min(-1,1,2) = -1. 

Example 2:

Input: nums = [7,9,5,8,1,3]
Output: 1
Explanation: Here n = 2. So we must remove 2 elements and divide the remaining array into two parts containing two elements each.
If we remove nums[2] = 5 and nums[3] = 8, the resultant array will be [7,9,1,3]. The difference in sums will be (7+9) - (1+3) = 12.
To obtain the minimum difference, we should remove nums[1] = 9 and nums[4] = 1. The resultant array becomes [7,5,8,3]. The difference in sums of the two parts is (7+5) - (8+3) = 1.
It can be shown that it is not possible to obtain a difference smaller than 1.

 

Constraints:

  • nums.length == 3 * n
  • 1 <= n <= 105
  • 1 <= nums[i] <= 105

Solutions

  • class Solution {
        public long minimumDifference(int[] nums) {
            int m = nums.length;
            int n = m / 3;
            long s = 0;
            long[] pre = new long[m + 1];
            PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
            for (int i = 1; i <= n * 2; ++i) {
                int x = nums[i - 1];
                s += x;
                pq.offer(x);
                if (pq.size() > n) {
                    s -= pq.poll();
                }
                pre[i] = s;
            }
            s = 0;
            long[] suf = new long[m + 1];
            pq = new PriorityQueue<>();
            for (int i = m; i > n; --i) {
                int x = nums[i - 1];
                s += x;
                pq.offer(x);
                if (pq.size() > n) {
                    s -= pq.poll();
                }
                suf[i] = s;
            }
            long ans = 1L << 60;
            for (int i = n; i <= n * 2; ++i) {
                ans = Math.min(ans, pre[i] - suf[i + 1]);
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        long long minimumDifference(vector<int>& nums) {
            int m = nums.size();
            int n = m / 3;
    
            using ll = long long;
            ll s = 0;
            ll pre[m + 1];
            priority_queue<int> q1;
            for (int i = 1; i <= n * 2; ++i) {
                int x = nums[i - 1];
                s += x;
                q1.push(x);
                if (q1.size() > n) {
                    s -= q1.top();
                    q1.pop();
                }
                pre[i] = s;
            }
            s = 0;
            ll suf[m + 1];
            priority_queue<int, vector<int>, greater<int>> q2;
            for (int i = m; i > n; --i) {
                int x = nums[i - 1];
                s += x;
                q2.push(x);
                if (q2.size() > n) {
                    s -= q2.top();
                    q2.pop();
                }
                suf[i] = s;
            }
            ll ans = 1e18;
            for (int i = n; i <= n * 2; ++i) {
                ans = min(ans, pre[i] - suf[i + 1]);
            }
            return ans;
        }
    };
    
  • class Solution:
        def minimumDifference(self, nums: List[int]) -> int:
            m = len(nums)
            n = m // 3
    
            s = 0
            pre = [0] * (m + 1)
            q1 = []
            for i, x in enumerate(nums[: n * 2], 1):
                s += x
                heappush(q1, -x)
                if len(q1) > n:
                    s -= -heappop(q1)
                pre[i] = s
    
            s = 0
            suf = [0] * (m + 1)
            q2 = []
            for i in range(m, n, -1):
                x = nums[i - 1]
                s += x
                heappush(q2, x)
                if len(q2) > n:
                    s -= heappop(q2)
                suf[i] = s
    
            return min(pre[i] - suf[i + 1] for i in range(n, n * 2 + 1))
    
    
  • func minimumDifference(nums []int) int64 {
    	m := len(nums)
    	n := m / 3
    	s := 0
    	pre := make([]int, m+1)
    	q1 := hp{}
    	for i := 1; i <= n*2; i++ {
    		x := nums[i-1]
    		s += x
    		heap.Push(&q1, -x)
    		if q1.Len() > n {
    			s -= -heap.Pop(&q1).(int)
    		}
    		pre[i] = s
    	}
    	s = 0
    	suf := make([]int, m+1)
    	q2 := hp{}
    	for i := m; i > n; i-- {
    		x := nums[i-1]
    		s += x
    		heap.Push(&q2, x)
    		if q2.Len() > n {
    			s -= heap.Pop(&q2).(int)
    		}
    		suf[i] = s
    	}
    	ans := int64(1e18)
    	for i := n; i <= n*2; i++ {
    		ans = min(ans, int64(pre[i]-suf[i+1]))
    	}
    	return ans
    }
    
    type hp struct{ sort.IntSlice }
    
    func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
    func (h *hp) Push(v any)        { h.IntSlice = append(h.IntSlice, v.(int)) }
    func (h *hp) Pop() any {
    	a := h.IntSlice
    	v := a[len(a)-1]
    	h.IntSlice = a[:len(a)-1]
    	return v
    }
    
  • function minimumDifference(nums: number[]): number {
        const m = nums.length;
        const n = Math.floor(m / 3);
        let s = 0;
        const pre: number[] = Array(m + 1);
        const q1 = new MaxPriorityQueue();
        for (let i = 1; i <= n * 2; ++i) {
            const x = nums[i - 1];
            s += x;
            q1.enqueue(x, x);
            if (q1.size() > n) {
                s -= q1.dequeue().element;
            }
            pre[i] = s;
        }
        s = 0;
        const suf: number[] = Array(m + 1);
        const q2 = new MinPriorityQueue();
        for (let i = m; i > n; --i) {
            const x = nums[i - 1];
            s += x;
            q2.enqueue(x, x);
            if (q2.size() > n) {
                s -= q2.dequeue().element;
            }
            suf[i] = s;
        }
        let ans = Number.MAX_SAFE_INTEGER;
        for (let i = n; i <= n * 2; ++i) {
            ans = Math.min(ans, pre[i] - suf[i + 1]);
        }
        return ans;
    }
    
    

All Problems

All Solutions