Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2040.html
2040. Kth Smallest Product of Two Sorted Arrays
- Difficulty: Hard.
- Related Topics: Array, Binary Search.
- Similar Questions: Find K Pairs with Smallest Sums, K-diff Pairs in an Array.
Problem
Given two sorted 0-indexed integer arrays nums1
and nums2
as well as an integer k
, return the **kth
(1-based) smallest product of nums1[i] * nums2[j]
where 0 <= i < nums1.length
and 0 <= j < nums2.length
.
**Example 1:
Input: nums1 = [2,5], nums2 = [3,4], k = 2
Output: 8
Explanation: The 2 smallest products are:
- nums1[0] * nums2[0] = 2 * 3 = 6
- nums1[0] * nums2[1] = 2 * 4 = 8
The 2nd smallest product is 8.
Example 2:
Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6
Output: 0
Explanation: The 6 smallest products are:
- nums1[0] * nums2[1] = (-4) * 4 = -16
- nums1[0] * nums2[0] = (-4) * 2 = -8
- nums1[1] * nums2[1] = (-2) * 4 = -8
- nums1[1] * nums2[0] = (-2) * 2 = -4
- nums1[2] * nums2[0] = 0 * 2 = 0
- nums1[2] * nums2[1] = 0 * 4 = 0
The 6th smallest product is 0.
Example 3:
Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3
Output: -6
Explanation: The 3 smallest products are:
- nums1[0] * nums2[4] = (-2) * 5 = -10
- nums1[0] * nums2[3] = (-2) * 4 = -8
- nums1[4] * nums2[0] = 2 * (-3) = -6
The 3rd smallest product is -6.
Constraints:
-
1 <= nums1.length, nums2.length <= 5 * 104
-
-105 <= nums1[i], nums2[j] <= 105
-
1 <= k <= nums1.length * nums2.length
-
nums1
andnums2
are sorted.
Solution
-
class Solution { static long inf = (long) 1e10; public long kthSmallestProduct(int[] nums1, int[] nums2, long k) { int n = nums2.length; long lo = -inf - 1; long hi = inf + 1; while (lo < hi) { long mid = lo + ((hi - lo) >> 1); long cnt = 0; for (int i : nums1) { int l = 0; int r = n - 1; int p = 0; if (0 <= i) { while (l <= r) { int c = l + ((r - l) >> 1); long mul = i * (long) nums2[c]; if (mul <= mid) { p = c + 1; l = c + 1; } else { r = c - 1; } } } else { while (l <= r) { int c = l + ((r - l) >> 1); long mul = i * (long) nums2[c]; if (mul <= mid) { p = n - c; r = c - 1; } else { l = c + 1; } } } cnt += p; } if (cnt >= k) { hi = mid; } else { lo = mid + 1L; } } return lo; } }
-
# 2040. Kth Smallest Product of Two Sorted Arrays # https://leetcode.com/problems/kth-smallest-product-of-two-sorted-arrays class Solution: def kthSmallestProduct(self, nums1: List[int], nums2: List[int], k: int) -> int: A1, A2 = [-x for x in nums1 if x < 0][::-1], [x for x in nums1 if x >= 0] B1, B2 = [-x for x in nums2 if x < 0][::-1], [x for x in nums2 if x >= 0] neg = len(A1) * len(B2) + len(A2) * len(B1) if k > neg: k -= neg s = 1 else: k = neg - k + 1 B1, B2 = B2, B1 s = -1 def count(A, B, t): res = 0 j = len(B) - 1 for x in A: while j >= 0 and x * B[j] > t: j -= 1 res += j + 1 return res left, right = 0, 10 ** 10 while left < right: mid = left + (right - left) // 2 if count(A1, B1, mid) + count(A2, B2, mid) >= k: right = mid else: left = mid + 1 return left * s
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).