Welcome to Subscribe On Youtube

2146. K Highest Ranked Items Within a Price Range

Description

You are given a 0-indexed 2D integer array grid of size m x n that represents a map of the items in a shop. The integers in the grid represent the following:

  • 0 represents a wall that you cannot pass through.
  • 1 represents an empty cell that you can freely move to and from.
  • All other positive integers represent the price of an item in that cell. You may also freely move to and from these item cells.

It takes 1 step to travel between adjacent grid cells.

You are also given integer arrays pricing and start where pricing = [low, high] and start = [row, col] indicates that you start at the position (row, col) and are interested only in items with a price in the range of [low, high] (inclusive). You are further given an integer k.

You are interested in the positions of the k highest-ranked items whose prices are within the given price range. The rank is determined by the first of these criteria that is different:

  1. Distance, defined as the length of the shortest path from the start (shorter distance has a higher rank).
  2. Price (lower price has a higher rank, but it must be in the price range).
  3. The row number (smaller row number has a higher rank).
  4. The column number (smaller column number has a higher rank).

Return the k highest-ranked items within the price range sorted by their rank (highest to lowest). If there are fewer than k reachable items within the price range, return all of them.

 

Example 1:

Input: grid = [[1,2,0,1],[1,3,0,1],[0,2,5,1]], pricing = [2,5], start = [0,0], k = 3
Output: [[0,1],[1,1],[2,1]]
Explanation: You start at (0,0).
With a price range of [2,5], we can take items from (0,1), (1,1), (2,1) and (2,2).
The ranks of these items are:
- (0,1) with distance 1
- (1,1) with distance 2
- (2,1) with distance 3
- (2,2) with distance 4
Thus, the 3 highest ranked items in the price range are (0,1), (1,1), and (2,1).

Example 2:

Input: grid = [[1,2,0,1],[1,3,3,1],[0,2,5,1]], pricing = [2,3], start = [2,3], k = 2
Output: [[2,1],[1,2]]
Explanation: You start at (2,3).
With a price range of [2,3], we can take items from (0,1), (1,1), (1,2) and (2,1).
The ranks of these items are:
- (2,1) with distance 2, price 2
- (1,2) with distance 2, price 3
- (1,1) with distance 3
- (0,1) with distance 4
Thus, the 2 highest ranked items in the price range are (2,1) and (1,2).

Example 3:

Input: grid = [[1,1,1],[0,0,1],[2,3,4]], pricing = [2,3], start = [0,0], k = 3
Output: [[2,1],[2,0]]
Explanation: You start at (0,0).
With a price range of [2,3], we can take items from (2,0) and (2,1). 
The ranks of these items are: 
- (2,1) with distance 5
- (2,0) with distance 6
Thus, the 2 highest ranked items in the price range are (2,1) and (2,0). 
Note that k = 3 but there are only 2 reachable items within the price range.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 105
  • 1 <= m * n <= 105
  • 0 <= grid[i][j] <= 105
  • pricing.length == 2
  • 2 <= low <= high <= 105
  • start.length == 2
  • 0 <= row <= m - 1
  • 0 <= col <= n - 1
  • grid[row][col] > 0
  • 1 <= k <= m * n

Solutions

BFS.

  • class Solution {
        public List<List<Integer>> highestRankedKItems(
            int[][] grid, int[] pricing, int[] start, int k) {
            int m = grid.length, n = grid[0].length;
            int row = start[0], col = start[1];
            int low = pricing[0], high = pricing[1];
            List<int[]> items = new ArrayList<>();
            if (low <= grid[row][col] && grid[row][col] <= high) {
                items.add(new int[] {0, grid[row][col], row, col});
            }
            grid[row][col] = 0;
            Deque<int[]> q = new ArrayDeque<>();
            q.offer(new int[] {row, col, 0});
            int[] dirs = {-1, 0, 1, 0, -1};
            while (!q.isEmpty()) {
                int[] p = q.poll();
                int i = p[0], j = p[1], d = p[2];
                for (int l = 0; l < 4; ++l) {
                    int x = i + dirs[l], y = j + dirs[l + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] > 0) {
                        if (low <= grid[x][y] && grid[x][y] <= high) {
                            items.add(new int[] {d + 1, grid[x][y], x, y});
                        }
                        grid[x][y] = 0;
                        q.offer(new int[] {x, y, d + 1});
                    }
                }
            }
            items.sort((a, b) -> {
                if (a[0] != b[0]) {
                    return a[0] - b[0];
                }
                if (a[1] != b[1]) {
                    return a[1] - b[1];
                }
                if (a[2] != b[2]) {
                    return a[2] - b[2];
                }
                return a[3] - b[3];
            });
            List<List<Integer>> ans = new ArrayList<>();
            for (int i = 0; i < items.size() && i < k; ++i) {
                int[] p = items.get(i);
                ans.add(Arrays.asList(p[2], p[3]));
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        vector<vector<int>> highestRankedKItems(vector<vector<int>>& grid, vector<int>& pricing, vector<int>& start, int k) {
            int m = grid.size(), n = grid[0].size();
            int row = start[0], col = start[1];
            int low = pricing[0], high = pricing[1];
            vector<tuple<int, int, int, int>> items;
            if (low <= grid[row][col] && grid[row][col] <= high)
                items.emplace_back(0, grid[row][col], row, col);
            queue<tuple<int, int, int>> q;
            q.emplace(row, col, 0);
            grid[row][col] = 0;
            vector<int> dirs = {-1, 0, 1, 0, -1};
            while (!q.empty()) {
                auto [i, j, d] = q.front();
                q.pop();
                for (int l = 0; l < 4; ++l) {
                    int x = i + dirs[l], y = j + dirs[l + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y]) {
                        if (low <= grid[x][y] && grid[x][y] <= high) items.emplace_back(d + 1, grid[x][y], x, y);
                        grid[x][y] = 0;
                        q.emplace(x, y, d + 1);
                    }
                }
            }
            sort(items.begin(), items.end());
            vector<vector<int>> ans;
            for (int i = 0; i < items.size() && i < k; ++i) {
                auto [d, p, x, y] = items[i];
                ans.push_back({x, y});
            }
            return ans;
        }
    };
    
  • class Solution:
        def highestRankedKItems(
            self, grid: List[List[int]], pricing: List[int], start: List[int], k: int
        ) -> List[List[int]]:
            m, n = len(grid), len(grid[0])
            row, col, low, high = start + pricing
            items = []
            if low <= grid[row][col] <= high:
                items.append([0, grid[row][col], row, col])
            q = deque([(row, col, 0)])
            grid[row][col] = 0
            while q:
                i, j, d = q.popleft()
                for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and grid[x][y]:
                        if low <= grid[x][y] <= high:
                            items.append([d + 1, grid[x][y], x, y])
                        q.append((x, y, d + 1))
                        grid[x][y] = 0
            items.sort()
            return [item[2:] for item in items][:k]
    
    
  • func highestRankedKItems(grid [][]int, pricing []int, start []int, k int) [][]int {
    	m, n := len(grid), len(grid[0])
    	row, col := start[0], start[1]
    	low, high := pricing[0], pricing[1]
    	var items [][]int
    	if low <= grid[row][col] && grid[row][col] <= high {
    		items = append(items, []int{0, grid[row][col], row, col})
    	}
    	q := [][]int{ {row, col, 0} }
    	grid[row][col] = 0
    	dirs := []int{-1, 0, 1, 0, -1}
    	for len(q) > 0 {
    		p := q[0]
    		q = q[1:]
    		i, j, d := p[0], p[1], p[2]
    		for l := 0; l < 4; l++ {
    			x, y := i+dirs[l], j+dirs[l+1]
    			if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] > 0 {
    				if low <= grid[x][y] && grid[x][y] <= high {
    					items = append(items, []int{d + 1, grid[x][y], x, y})
    				}
    				grid[x][y] = 0
    				q = append(q, []int{x, y, d + 1})
    			}
    		}
    	}
    	sort.Slice(items, func(i, j int) bool {
    		a, b := items[i], items[j]
    		if a[0] != b[0] {
    			return a[0] < b[0]
    		}
    		if a[1] != b[1] {
    			return a[1] < b[1]
    		}
    		if a[2] != b[2] {
    			return a[2] < b[2]
    		}
    		return a[3] < b[3]
    	})
    	var ans [][]int
    	for i := 0; i < len(items) && i < k; i++ {
    		ans = append(ans, items[i][2:])
    	}
    	return ans
    }
    

All Problems

All Solutions