Welcome to Subscribe On Youtube
2143. Choose Numbers From Two Arrays in Range
Description
You are given two 0-indexed integer arrays nums1
and nums2
of length n
.
A range [l, r]
(inclusive) where 0 <= l <= r < n
is balanced if:
- For every
i
in the range[l, r]
, you pick eithernums1[i]
ornums2[i]
. - The sum of the numbers you pick from
nums1
equals to the sum of the numbers you pick fromnums2
(the sum is considered to be0
if you pick no numbers from an array).
Two balanced ranges from [l1, r1]
and [l2, r2]
are considered to be different if at least one of the following is true:
l1 != l2
r1 != r2
nums1[i]
is picked in the first range, andnums2[i]
is picked in the second range or vice versa for at least onei
.
Return the number of different ranges that are balanced. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: nums1 = [1,2,5], nums2 = [2,6,3] Output: 3 Explanation: The balanced ranges are: - [0, 1] where we choose nums2[0], and nums1[1]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 2 = 2. - [0, 2] where we choose nums1[0], nums2[1], and nums1[2]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 + 5 = 6. - [0, 2] where we choose nums1[0], nums1[1], and nums2[2]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 + 2 = 3. Note that the second and third balanced ranges are different. In the second balanced range, we choose nums2[1] and in the third balanced range, we choose nums1[1].
Example 2:
Input: nums1 = [0,1], nums2 = [1,0] Output: 4 Explanation: The balanced ranges are: - [0, 0] where we choose nums1[0]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0. - [1, 1] where we choose nums2[1]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0. - [0, 1] where we choose nums1[0] and nums2[1]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0. - [0, 1] where we choose nums2[0] and nums1[1]. The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 = 1.
Constraints:
n == nums1.length == nums2.length
1 <= n <= 100
0 <= nums1[i], nums2[i] <= 100
Solutions
-
class Solution { public int countSubranges(int[] nums1, int[] nums2) { int n = nums1.length; int s1 = Arrays.stream(nums1).sum(); int s2 = Arrays.stream(nums2).sum(); int[][] f = new int[n][s1 + s2 + 1]; int ans = 0; final int mod = (int) 1e9 + 7; for (int i = 0; i < n; ++i) { int a = nums1[i], b = nums2[i]; f[i][a + s2]++; f[i][-b + s2]++; if (i > 0) { for (int j = 0; j <= s1 + s2; ++j) { if (j >= a) { f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod; } if (j + b <= s1 + s2) { f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod; } } } ans = (ans + f[i][s2]) % mod; } return ans; } }
-
class Solution { public: int countSubranges(vector<int>& nums1, vector<int>& nums2) { int n = nums1.size(); int s1 = accumulate(nums1.begin(), nums1.end(), 0); int s2 = accumulate(nums2.begin(), nums2.end(), 0); int f[n][s1 + s2 + 1]; memset(f, 0, sizeof(f)); int ans = 0; const int mod = 1e9 + 7; for (int i = 0; i < n; ++i) { int a = nums1[i], b = nums2[i]; f[i][a + s2]++; f[i][-b + s2]++; if (i) { for (int j = 0; j <= s1 + s2; ++j) { if (j >= a) { f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod; } if (j + b <= s1 + s2) { f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod; } } } ans = (ans + f[i][s2]) % mod; } return ans; } };
-
class Solution: def countSubranges(self, nums1: List[int], nums2: List[int]) -> int: n = len(nums1) s1, s2 = sum(nums1), sum(nums2) f = [[0] * (s1 + s2 + 1) for _ in range(n)] ans = 0 mod = 10**9 + 7 for i, (a, b) in enumerate(zip(nums1, nums2)): f[i][a + s2] += 1 f[i][-b + s2] += 1 if i: for j in range(s1 + s2 + 1): if j >= a: f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod if j + b < s1 + s2 + 1: f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod ans = (ans + f[i][s2]) % mod return ans
-
func countSubranges(nums1 []int, nums2 []int) (ans int) { n := len(nums1) s1, s2 := sum(nums1), sum(nums2) f := make([][]int, n) for i := range f { f[i] = make([]int, s1+s2+1) } const mod int = 1e9 + 7 for i, a := range nums1 { b := nums2[i] f[i][a+s2]++ f[i][-b+s2]++ if i > 0 { for j := 0; j <= s1+s2; j++ { if j >= a { f[i][j] = (f[i][j] + f[i-1][j-a]) % mod } if j+b <= s1+s2 { f[i][j] = (f[i][j] + f[i-1][j+b]) % mod } } } ans = (ans + f[i][s2]) % mod } return } func sum(nums []int) (ans int) { for _, x := range nums { ans += x } return }
-
function countSubranges(nums1: number[], nums2: number[]): number { const n = nums1.length; const s1 = nums1.reduce((a, b) => a + b, 0); const s2 = nums2.reduce((a, b) => a + b, 0); const f: number[][] = Array(n) .fill(0) .map(() => Array(s1 + s2 + 1).fill(0)); const mod = 1e9 + 7; let ans = 0; for (let i = 0; i < n; ++i) { const [a, b] = [nums1[i], nums2[i]]; f[i][a + s2]++; f[i][-b + s2]++; if (i) { for (let j = 0; j <= s1 + s2; ++j) { if (j >= a) { f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod; } if (j + b <= s1 + s2) { f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod; } } } ans = (ans + f[i][s2]) % mod; } return ans; }