Welcome to Subscribe On Youtube
2134. Minimum Swaps to Group All 1’s Together II
Description
A swap is defined as taking two distinct positions in an array and swapping the values in them.
A circular array is defined as an array where we consider the first element and the last element to be adjacent.
Given a binary circular array nums
, return the minimum number of swaps required to group all 1
's present in the array together at any location.
Example 1:
Input: nums = [0,1,0,1,1,0,0] Output: 1 Explanation: Here are a few of the ways to group all the 1's together: [0,0,1,1,1,0,0] using 1 swap. [0,1,1,1,0,0,0] using 1 swap. [1,1,0,0,0,0,1] using 2 swaps (using the circular property of the array). There is no way to group all 1's together with 0 swaps. Thus, the minimum number of swaps required is 1.
Example 2:
Input: nums = [0,1,1,1,0,0,1,1,0] Output: 2 Explanation: Here are a few of the ways to group all the 1's together: [1,1,1,0,0,0,0,1,1] using 2 swaps (using the circular property of the array). [1,1,1,1,1,0,0,0,0] using 2 swaps. There is no way to group all 1's together with 0 or 1 swaps. Thus, the minimum number of swaps required is 2.
Example 3:
Input: nums = [1,1,0,0,1] Output: 0 Explanation: All the 1's are already grouped together due to the circular property of the array. Thus, the minimum number of swaps required is 0.
Constraints:
1 <= nums.length <= 105
nums[i]
is either0
or1
.
Solutions
-
class Solution { public int minSwaps(int[] nums) { int cnt = 0; for (int v : nums) { cnt += v; } int n = nums.length; int[] s = new int[(n << 1) + 1]; for (int i = 0; i < (n << 1); ++i) { s[i + 1] = s[i] + nums[i % n]; } int mx = 0; for (int i = 0; i < (n << 1); ++i) { int j = i + cnt - 1; if (j < (n << 1)) { mx = Math.max(mx, s[j + 1] - s[i]); } } return cnt - mx; } }
-
class Solution { public: int minSwaps(vector<int>& nums) { int cnt = 0; for (int& v : nums) cnt += v; int n = nums.size(); vector<int> s((n << 1) + 1); for (int i = 0; i < (n << 1); ++i) s[i + 1] = s[i] + nums[i % n]; int mx = 0; for (int i = 0; i < (n << 1); ++i) { int j = i + cnt - 1; if (j < (n << 1)) mx = max(mx, s[j + 1] - s[i]); } return cnt - mx; } };
-
class Solution: def minSwaps(self, nums: List[int]) -> int: cnt = nums.count(1) n = len(nums) s = [0] * ((n << 1) + 1) for i in range(n << 1): s[i + 1] = s[i] + nums[i % n] mx = 0 for i in range(n << 1): j = i + cnt - 1 if j < (n << 1): mx = max(mx, s[j + 1] - s[i]) return cnt - mx
-
func minSwaps(nums []int) int { cnt := 0 for _, v := range nums { cnt += v } n := len(nums) s := make([]int, (n<<1)+1) for i := 0; i < (n << 1); i++ { s[i+1] = s[i] + nums[i%n] } mx := 0 for i := 0; i < (n << 1); i++ { j := i + cnt - 1 if j < (n << 1) { mx = max(mx, s[j+1]-s[i]) } } return cnt - mx }
-
function minSwaps(nums: number[]): number { const n = nums.length; const m = nums.reduce((a, c) => a + c, 0); let cnt = nums.reduce((a, c, i) => a + (i < m ? c : 0), 0); let ans = cnt; for (let i = m; i < m + n; i++) { let prev = nums[i - m]; let post = nums[i % n]; cnt += post - prev; ans = Math.max(cnt, ans); } return m - ans; }
-
public class Solution { public int MinSwaps(int[] nums) { int k = nums.Sum(); int n = nums.Length; int cnt = 0; for (int i = 0; i < k; ++i) { cnt += nums[i]; } int mx = cnt; for (int i = k; i < n + k; ++i) { cnt += nums[i % n] - nums[(i - k + n) % n]; mx = Math.Max(mx, cnt); } return k - mx; } }
-
impl Solution { pub fn min_swaps(nums: Vec<i32>) -> i32 { let k: i32 = nums.iter().sum(); let n: usize = nums.len(); let mut cnt: i32 = 0; for i in 0..k { cnt += nums[i as usize]; } let mut mx: i32 = cnt; for i in k..(n as i32) + k { cnt += nums[(i % (n as i32)) as usize] - nums[((i - k + (n as i32)) % (n as i32)) as usize]; mx = mx.max(cnt); } return k - mx; } }
-
function minSwaps(nums) { const n = nums.length; const k = nums.reduce((a, b) => a + b, 0); let cnt = k - nums.slice(0, k).reduce((a, b) => a + b, 0); let min = cnt; for (let i = k; i < n + k; i++) { cnt += nums[i - k] - nums[i % n]; min = Math.min(min, cnt); } return min; }