Welcome to Subscribe On Youtube
2122. Recover the Original Array
Description
Alice had a 0-indexed array arr
consisting of n
positive integers. She chose an arbitrary positive integer k
and created two new 0-indexed integer arrays lower
and higher
in the following manner:
lower[i] = arr[i] - k
, for every indexi
where0 <= i < n
higher[i] = arr[i] + k
, for every indexi
where0 <= i < n
Unfortunately, Alice lost all three arrays. However, she remembers the integers that were present in the arrays lower
and higher
, but not the array each integer belonged to. Help Alice and recover the original array.
Given an array nums
consisting of 2n
integers, where exactly n
of the integers were present in lower
and the remaining in higher
, return the original array arr
. In case the answer is not unique, return any valid array.
Note: The test cases are generated such that there exists at least one valid array arr
.
Example 1:
Input: nums = [2,10,6,4,8,12] Output: [3,7,11] Explanation: If arr = [3,7,11] and k = 1, we get lower = [2,6,10] and higher = [4,8,12]. Combining lower and higher gives us [2,6,10,4,8,12], which is a permutation of nums. Another valid possibility is that arr = [5,7,9] and k = 3. In that case, lower = [2,4,6] and higher = [8,10,12].
Example 2:
Input: nums = [1,1,3,3] Output: [2,2] Explanation: If arr = [2,2] and k = 1, we get lower = [1,1] and higher = [3,3]. Combining lower and higher gives us [1,1,3,3], which is equal to nums. Note that arr cannot be [1,3] because in that case, the only possible way to obtain [1,1,3,3] is with k = 0. This is invalid since k must be positive.
Example 3:
Input: nums = [5,435] Output: [220] Explanation: The only possible combination is arr = [220] and k = 215. Using them, we get lower = [5] and higher = [435].
Constraints:
2 * n == nums.length
1 <= n <= 1000
1 <= nums[i] <= 109
- The test cases are generated such that there exists at least one valid array
arr
.
Solutions
-
class Solution { public int[] recoverArray(int[] nums) { Arrays.sort(nums); for (int i = 1, n = nums.length; i < n; ++i) { int d = nums[i] - nums[0]; if (d == 0 || d % 2 == 1) { continue; } boolean[] vis = new boolean[n]; vis[i] = true; List<Integer> t = new ArrayList<>(); t.add((nums[0] + nums[i]) >> 1); for (int l = 1, r = i + 1; r < n; ++l, ++r) { while (l < n && vis[l]) { ++l; } while (r < n && nums[r] - nums[l] < d) { ++r; } if (r == n || nums[r] - nums[l] > d) { break; } vis[r] = true; t.add((nums[l] + nums[r]) >> 1); } if (t.size() == (n >> 1)) { int[] ans = new int[t.size()]; int idx = 0; for (int e : t) { ans[idx++] = e; } return ans; } } return null; } }
-
class Solution { public: vector<int> recoverArray(vector<int>& nums) { sort(nums.begin(), nums.end()); for (int i = 1, n = nums.size(); i < n; ++i) { int d = nums[i] - nums[0]; if (d == 0 || d % 2 == 1) continue; vector<bool> vis(n); vis[i] = true; vector<int> ans; ans.push_back((nums[0] + nums[i]) >> 1); for (int l = 1, r = i + 1; r < n; ++l, ++r) { while (l < n && vis[l]) ++l; while (r < n && nums[r] - nums[l] < d) ++r; if (r == n || nums[r] - nums[l] > d) break; vis[r] = true; ans.push_back((nums[l] + nums[r]) >> 1); } if (ans.size() == (n >> 1)) return ans; } return {}; } };
-
class Solution: def recoverArray(self, nums: List[int]) -> List[int]: nums.sort() n = len(nums) for i in range(1, n): d = nums[i] - nums[0] if d == 0 or d % 2 == 1: continue vis = [False] * n vis[i] = True ans = [(nums[0] + nums[i]) >> 1] l, r = 1, i + 1 while r < n: while l < n and vis[l]: l += 1 while r < n and nums[r] - nums[l] < d: r += 1 if r == n or nums[r] - nums[l] > d: break vis[r] = True ans.append((nums[l] + nums[r]) >> 1) l, r = l + 1, r + 1 if len(ans) == (n >> 1): return ans return []
-
func recoverArray(nums []int) []int { sort.Ints(nums) for i, n := 1, len(nums); i < n; i++ { d := nums[i] - nums[0] if d == 0 || d%2 == 1 { continue } vis := make([]bool, n) vis[i] = true ans := []int{(nums[0] + nums[i]) >> 1} for l, r := 1, i+1; r < n; l, r = l+1, r+1 { for l < n && vis[l] { l++ } for r < n && nums[r]-nums[l] < d { r++ } if r == n || nums[r]-nums[l] > d { break } vis[r] = true ans = append(ans, (nums[l]+nums[r])>>1) } if len(ans) == (n >> 1) { return ans } } return []int{} }